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Abstract

Data splitting is a ubiquitous tool based on the following simple idea. Partition the

data into disjoint “splits” so that one portion of the data can be allocated to simplifying

the statistical problem by: learning about the underlying model; estimating, selecting,

or eliminating nuisance parameters; reducing the dimension of the problem; choosing

the form of an estimator or test statistic, etc. Then, formal inference can be based on

the independent (complement) second portion of the data. Typically, the problem of

constructing tests that control a measure of Type 1 error is made much easier by data

splitting. Moreover, in single or multiple testing problems that include a large number

of parameters, there can be a dramatic increase of power by reducing the number

of parameters tested, particularly if the underlying parameter is relatively sparse. A

criticism of single splitting is a loss of power or efficiency due to testing on only a

fraction of the data, though carefully selection of a test statistic may in turn improve

power. In addition, a single split method can be viewed as unsatisfactory since it would

rely on an arbitrary split or ordering of the data (and hence violate the sufficiency

principle). To combat the possible loss of power with single splitting, we propose

repeated splitting by computing tests over many splits of the data. Assuming each split

results in a p-value, the problem becomes how to combine these now very dependent

p-values to construct one overall procedure. In this paper, we present some general

methods that exhibit rigorous error control, both in finite samples and asymptotically.

The power of these methods are compared with each other, as well as the power of full

data tests and tests using only a single split of the data.

KEY WORDS: Data Splitting, Hypothesis Testing, P -values, Subsampling, U -statistics.
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1 Introduction

Data splitting, a technique which involves partitioning a data set into disjoint “splits” or

subsamples which can then be used for various statistical tasks, has widespread application

in the statistical literature. Typically, one portion of the data is used for some form of

selection (such as model fitting, dimension reduction, or choice of tuning parameters), and

then the second, independent portion of the data is used for some further purpose such as

estimation and model fitting. In addition, data splitting can be used in prediction to assess

the performance of models (where a portion of the data has been used to select and/or

fit a model and the remainder is used to assess the performance of the selected model) or

in inference to perform tests of significance after hypotheses or test statistics have been

selected. Data splitting has become a useful remedy for data-snooping (giving valid inference

after selection of a hypothesis), estimating nuisance parameters, and avoiding over-fitting in

prediction problems. Some examples of problems that benefit from the use of data splitting

are given in Section 2.

Early works employing data splitting, such as Larson (1931) and Horst (1941), focused

mainly on prediction error in regression models. They demonstrated the decrease in predictive

power that a linear model has when used for out of sample predictions when compared with

in sample predictions. The ideas pioneered in these works have since evolved into the now

ubiquitous cross-validation method for assessing predictive models. A detailed history of data

splitting as applied to assessment of statistical predictions is given in Stone (1974).

Another, often neglected, use of data splitting is as a remedy for “data snooping.” Re-

searchers who do not specify hypotheses to test prior to collecting data often formulate

hypotheses based on the data that they observe. After computing p-values for many pos-

sible hypotheses, only those that are most significant are reported. It becomes difficult to

distinguish results that are truly present in the population from artifacts of the collected

data. Ioannidis (2005) suggests that data snooping is a primary reason why it is more likely

for a research claim to be false than true. While multiple testing procedures controlling the

familywise error rate or the false discovery rate can address the problem of data snooping,

these methods are often not done in practice. More subtle forms of data snooping, which are

often not taken into account, involve goodness of fit testing prior to hypothesis testing, and

using several models for inference while only reporting the most significant results. A simpler

and more interpretable solution is to use a portion of the data to suggest hypotheses, and a

second, independent portion to test the selected hypotheses.

The downside to this data splitting method is a potential loss of power, although it is

somewhat unclear how the loss of power resulting from only testing on a split of the data

compares with the loss of power resulting from using a correction for multiplicity such as
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the Bonferroni correction. Unlike estimation problems, where simply averaging estimates

taken over several splits of the data can be expected to improve accuracy, it is not obvious

how to combine information across several splits of the data in inference problems, such as

controlling error rates in testing.

Data splitting is often not used by researchers who fear that their results will appear less

significant if only tested on a fraction of the available data. To avoid the inherent loss of

power associated with data splitting, it may be beneficial to perform selection and inference

on the full data. In certain problems, valid inference after model selection using the entirety

of the data for both the model selection and inference steps can be performed by conditioning

on the selected model. This approach is studied in Potscher (1991) as well as Fithian et al.

(2015). Once again, it remains unclear whether the loss of power from conditioning on a

selected model is better than the loss of power from data splitting.

A somewhat more obscure use of a data splitting technique is to use a portion of the data

to select an efficient test statistic, and perform the test on the remainder of the data. While

the applications of data splitting to improve prediction (and assessment of predictors) are well

studied, there is very little written on the efficacy of data splitting for improving inference.

Works in this vein include Cox (1975) and Moran (1973), although it is worth noting that

Cox mentions he was “unable to trace its history.” The hope for data splitting in this context

is that the loss of power associated with performing a test on a smaller subsample than

the full data could be offset by selecting a suitably efficient test statistic, leading to a more

powerful test than naively using the full data. Even in testing problems where an “optimal”

(e.g. UMP invariant or maximin) testing procedure exists, such tests may have low power

against particular alternatives. Using a portion of the data to estimate how the parameter

departs from the null can suggest a more efficient statistic based on the second split of the

data. Having some knowledge about the direction of the alternative may compensate for the

loss of power due to splitting the data.

An important example is testing that a vector of parameters is zero against a sparse

alternative. Examining the first part of the data can suggest which parameters are likely to

be non-zero, leading perhaps to a more efficient test statistic based on the second part of the

data. However, it is unclear whether the improvement in power attained from reducing the

dimension of the problem is sufficient to justify the loss of power from splitting the data, not

to mention the challenge of deriving valid conditional procedures.

More recent works exploring the use of data splitting to improve power pertain to multiple

testing problems. Rubin et al. (2006) employs an initial split of the data to select thresholds

used for testing on the second split. Ignatiadis et al. (2016) gives a weighted testing procedure

where the first split of the data is used to choose weights of individual hypotheses, and the

second split is used for testing. Interestingly, in these examples, use of the initial split of the
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data is not used to select efficient statistics; however, these examples are similar in spirit to

selecting efficient test statistics in that both methods use an initial split of the data to gain

some knowledge about the particular alternative hypothesis, and demonstrate that this can

indeed improve power.

A major criticism of data splitting is that it introduces randomization into data analysis.

Two researchers nominally applying the same methodology to the same data set could reach

different conclusions if they choose different subsamples for each stage. In i.i.d. problems,

such a method violates the sufficiency principle, which demands that any inference should be

invariant with respect to the ordering of the data. But, combining p-values across a large

number of splits could help lessen the sensitivity of inference after selection to the random

allocation of data to each split. There have been several recent papers addressing the issue

of combining p-values obtained over multiple splits of the data. van de Wiel et al. (2009)

addresses combining p-values over multiple splits of a data testing the hypothesis that two

models give the same prediction error. When assessing prediction error, the two splits are

used as training and test sets, respectively, resulting in a p-value based on the residuals.

Then, p-values are aggregated using the median.

A similar, albeit less general, method of combining a fixed number of splits is proposed by

Meinshausen et al. (2009). In high dimensional linear models, data splitting is often used

to reduce the dimension of the problem. A portion of the data is used to choose predictors

(using an algorithm that gives asymptotic guarantees of selecting predictors including the

true model such as SURE selection, given in Fan and Lv (2008)), while the remainder is

used for inference about the selected predictors. This approach is taken in Wasserman and

Roeder (2009) and Barber and Candes (2016). Meinshausen et al. (2009) propose a method

of combining p-values in these regression problems while giving asymptotic control of the

FWER and FDR, and they provide numerical evidence that multi-split methods can provide

an improvement over using only a single split. These papers consider only a fixed number

of splits of the data. It would be desirable to give methods that allow use of an arbitrary

number of splits of the data, and to study the effect of the number of splits used for testing.

The main goal of this paper is to develop testing procedures that allow an arbitrary

number of splits of the data by combining results across splits. The main focus is primarily

on rigorous Type 1 error control, though power considerations are discussed as well. We

introduce four general classes of methods of combining p-values over an arbitrary number

of splits of the data. The first is similar in spirit to the approach taken in Meinshausen

et al. (2009), but has finite sample control of error rates in a very general setup. While

easy to apply, the proposed method is conservative in that the resulting error rate is strictly

below the nominal level. This leads to the following questions. Are conservative methods

for combining splits an improvement over using a single split? How conservative are the
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conservative methods, and can they be improved upon? How do the multi-split methods

depend on the number of splits used, and is there a best number of splits?

Section 2 presents some examples to fix ideas. Section 3 gives a formal description of data

splitting for inference, as well as several very general methods of combining test decisions or

p-values computed over multiple splits of the data. The methods in this section give exact

finite sample control of the null rejection probabilities, but can be conservative in the sense

that the null rejection probabilities can be below the nominal level (even asymptotically).

We also offer an alternative approach (based on concentration inequalities) which can be

more powerful when the split sizes are small.

Section 4 gives approximate methods of combining splits which are generally applicable

under mild assumptions, but have asymptotic level equal to the nominal level. Rather

than bounding tail probabilities for the average (or median) p-value over all splits, one

can accurately estimate the limiting distribution as a basis for inference, resulting in more

powerful procedures. For example, for a small number of splits (or arbitrary size), the

limiting distribution of the average p-value (averaged over the splits) can be consistently

approximated via simulation or resampling. For a larger number of splits (of smaller size), we

can approximate the distribution by exploiting the U -statistics structure of the average (or

median) p-value. Section 5 provides a conclusion, as well as some important questions that

remain for future work. The Appendix (Sections 6, 7, 8) concern some auxiliary results and

proofs. Some general asymptotic theory for U -statistics (as well as corresponding M -statistics)

is given in Section 6 which allows for the kernel order to increase with sample size. Section 7

concerns verification of a non degeneracy condition in Corollary 4.1. Section 8 gives useful

results and proofs of the results stated in the main text.

Numerical and theoretical comparisons of these methods, as well as recommendations for

choice of tuning parameters are provided in the Supplement. First, the power of the methods

combining splits compares with the UMP test in the case of testing for a single normal mean.

While there is no selection in this example, it is helpful to understand how various methods

of combining splits compares with the UMP test. Theoretical results and simulations are

reported. Surprisingly, split sampling based on small splits attain the optimal limiting local

power function in this example.

Then, we examine single (but multivariate) testing for the null hypothesis that many

means are zero as well as for the moment inequality problem. Special attention is payed

to sparse alternatives, and whether power can be improved by selecting means which are

suspected to be non-zero. In these examples, we compare the various methods of splitting

the data, consider several split sizes, and multiple methods of selection.
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2 Some Motivating Examples

In this section, we mention some examples that will help fix ideas and provide motivation for

data splitting.

Example 2.1. (Multivariate Mean) Suppose Xi = (Xi,1, ..., Xi,p), i = 1, ..., n are i.i.d.

multivariate normal with mean (µ1, ..., µp) and identity covariance. We are interested in

testing H0 : µ1 = · · · = µp = 0. We could use the classical Chi-squared test, but since the

critical value increases with the degrees of freedom p, it may be helpful to first “weed out”

those indices for which the mean appears close to zero. Instead, we use an initial split of the

data to select which means to include. Suppose that S is a randomly chosen subset of size b

from the set {1, ..., n}, which defines a “split” of the data. We could “select” means using

the data in Scn,i (the data not corresponding to S) according to whether

√
n− b

∣∣X̄j(S
c)
∣∣ ..= 1√

n− b

∣∣∣∣∣∑
i∈Sc

Xi,j

∣∣∣∣∣
exceeds z1−β for some β < 1/2, and then perform a test using the Chi-squared statistic∑

j selected

bX̄2
j (S)

to get a p-value using the quantiles of the Chi-squared distribution with degrees of freedom

equal to the number of selected means. Alternatively, one may test using other test statistics,

such as the maximum absolute sample mean or Tukey’s higher criticism; see Arias-Castro

et al. (2011).

Cox (1975) studied a single split approach in the case where the alternatives are restricted

so that only of the populations may have a nonzero mean. But rather than an arbitrary split

of the data, we may wish to combine p-values over many splits of the data. Moran (1973)

investigated the usefulness of using a portion of the data to determine the direction in which

a parameter departs from a null hypothesized value and using the remainder of the data to

construct a powerful test against alternatives in the selected direction. Both these authors

considered one split of the data. Based on one split, the p-value is U(0, 1) under H0. Here,

we compute many (dependent) p-values across multiple splits of the data. The problem we

wish to address is how to combine these p-values in a valid way so that rigorous error control

is maintained.

Example 2.2. (Regression Problems) Consider the linear regression model

Y = Xβ + ε
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where Y ∈ Rn is a vector of response variables, X is an n× p design matrix and ε ∈ Rn is a

vector of error terms with εi i.i.d. N(0, σ2).

In model selection problems, the majority of selection algorithms may include many

erroneous noise variables and it can be challenging to report models that control an appropriate

error rate. This difficulty is particularly apparent in the “high-dimensional” setting where

p > n. These high dimensional regression problems can be greatly simplified through the

use of data splitting. Several proposals for inference in these problems, including those by

Wasserman and Roeder (2009) and Barber and Candes (2016) involve using a portion of the

data to reduce the dimension of the problem to a tractable size and then using the remainder of

the data to perform inference. Wasserman and Roeder (2009) consider multi-stage regression

problems. They use a portion of the data to select a model among some selected candidate

models by cross validation. The remainder of the data is then used for hypothesis testing on

the selected variables. As mentioned in the introduction, Meinshausen et al. (2009) propose

a method of combining p-values in these regression problems, and they provide numerical

evidence that multi-split methods can provide an improvement over using only a single split.

Our first approach in the next section is similar to that of Meinshausen et al. (2009), but we

prove a very general result that applies to any i.i.d. testing problem (with fixed or arbitrary

number of splits) and it has finite sample validity.

Example 2.3. (Moment Inequality Problem) The moment inequality problem, which

is useful in many econometric applications, relates to testing a number of moments are

non-positive against the alternative that at least one is positive. A survey of the moment

inequality problem is given by Canay and Shaikh (2017). In this problem, data splitting may

be useful to reduce the number of moments under consideration. Romano et al. (2014) and

Andrews and Soares (2010) develop tests that make use of selecting components for testing

and also provide an overview of commonly used test statistics.

Let X1, ..., Xn be iid random variables with distribution P ∈ P on Rp. For convenience,

we will assume P is a family of distribution having finite second moments. Consider the

problem of testing the null hypothesis

H0 : P ∈ P0

against the null hypothesis

Ha : P ∈ P1

where P0 = {P ∈ P : EP (X1) ≤ 0} (with the inequality is component-wise) and P1 = P\P0.

That is, we are interested in testing the null hypothesis that the component-wise means are all

non-positive against the alternative that the mean of at least one component is non-negative.

Throughout, we will assume that the Xi have covariance matrix Σ, and we will denote the

sample covariance matrix by Σ̂. Furthermore, denote by s2j the sample variance of the Xi,j’s.
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The classical approach to testing in this problem is to choose a test statistic such as a

maximum or Chi-squared statistic and estimate the distribution under E(X) = 0. Some test

statistics include

Mn
..= max

1≤j≤p

√
n
X̄j

sj
,

Qn
..= inf

t=(t1,...,tp)<0
Z ′n(t)Σ̂−1Zn(t)

where

Zn(t) ..=

(√
n
X̄1 − t1
s1

, ...,
√
n
X̄p − tp
sp

)
and

Wn
..=

k∑
j=1

(√
n
X̄j

sj

)2

I
{
X̄j > 0

}
Similar to Example 2.1, the null distribution (based on a “least favorable” configuration)

assuming that all means are 0 has a critical value which increases with the dimension p,

making it difficult to achieve good power. More sophisticated methods of testing use test

statistics which adapt to the negative mean components and estimate the distribution of

the test statistic under the true null distribution rather than assuming all components have

mean zero. In the interest of constructing powerful tests, it would be useful to identify which

components have negative means and exclude those from a test statistic. But, the technical

hurdle (without data splitting) is the construction of critical values, which has proven to be

challenging. Rather than using full data methods, this task can be greatly simplified by using

data splitting methods. Allocating a portion of the data to identify the negative components

of the mean and ultimately testing on an independent portion of the data eliminates the

burden of accounting for the selection procedure.

Example 2.4. (Goodness of fit) In the quintessential goodness of fit testing problem,

assume U1, . . . , Un are i.i.d. with c.d.f. F on (0, 1) and H0 specifies the underlying distribution

is U(0, 1) versus the nonparametric alternatives that F is not U(0, 1). Let h1, h2, . . . be an

orthonormal basis in L2(0, 1). Define the normalized averages Zj = n−1/2
∑

i hj(Ui). Then,

tests can be based on Z1, Z2, . . . (such as the Neyman smooth tests). In large samples, the

problem is approximately the same as Example 2.1 and similar considerations apply. Thus,

one might hope to use a small number of the Zj in which to direct power and data splitting

offers an approach.
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3 Conservative Finite Sample Methods of Combining

Splits

Suppose X1, . . . , Xn are independent and identically distributed (i.i.d.) according to a

probability distribution P on some sample space S. The basic goal is to construct a test of

some null hypothesis H0 : P ∈ ω. Sometimes, it is useful to have two independent samples,

so that the first sample may be used to make the testing problem easier in some sense, say by

estimating or even eliminating nuisance parameters, dimension-reduction, etc. Then, a test

may more easily be constructed using the second sample. For any independently sampled

data, one can arbitrarily create two independent samples by splitting the data.

Fix an integer b between 1 and n. Consider the N =
(
n
b

)
subsets of {1, ..., n} of size b and

let Sn,i denote the ith subset of size b, ordered in any fashion. For each Sn,i, i = 1, . . . , N ,

construct a level α test of H0 using the data with indices falling in Sn,i. For example, suppose

a p-value p̂n,i is available based on the test using Sn,i. Note, however, we specifically do allow

for selection of the test statistic to also depend on the data with indices falling in Scn,i in the

sense that the choice of test performed on Sn,i can depend on Scn,i, the complement of Sn,i,

i.e., the n− b observations not in Sn,i. However, we do require that, conditional on the data

indexed by Scn,i, the p-value p̂n,i is still valid. That is, for any P ∈ ω,

P{p̂n,i ≤ u|Dc
n,i} ≤ u 0 < u < 1 . (3.1)

where Dc
n,i is the data indexed by Sn,i. Then, unconditionally, we still have that p̂n,i is indeed

a genuine p-value in that, for any P ∈ ω, it satisfies

P{p̂n,i ≤ u} ≤ u 0 < u < 1 . (3.2)

Of course, in the i.i.d. case, the data indexed by Sn,i and by its complement are independent

so that (3.1) equals (3.2). The difficulty lies in the fact that, even in the i.i.d. setting, all

these N p-values are quite dependent, and so the problem becomes how to combine them in

order to construct an overall test that controls the Type 1 error rate (and is powerful).

3.1 Quantiles of p-values

Fix a positive integer k and β ∈ (0, 1). Consider the overall test that rejects H0 if at least k

out of the N p-values are less than or equal to β. What can we say about the overall level

of this test? Let B denote the number of p-values less than or equal to β. By Markov’s

inequality,

P{reject} = P{B ≥ k} ≤ E(B)/k ≤ βN/k . (3.3)
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Therefore, if β, N and k are such that βN/k = α, then the Type 1 error is controlled at level

α. For a given k and N , simply choose β = kα/N .

For example, suppose N is even and k = N/2. Then, taking β = α/2, the test that rejects

if at least half of the p-values are less than α/2 controls the probability of a Type 1 error. In

other words, most of the p-values should be significant at level α/2. To put it another way,

the median of the N p-values must be less than α/2 (where we define the median of an even

number N of p-values to be the N/2 ordered value from smallest to largest).

For N odd, the median p-value is less than or equal to β if and only if (N + 1)/2 of the

p-values are significant at level β. Thus, applying (3.3) with k = (N + 1)/2 yields

P{reject} = P{B ≥ N + 1

2
} ≤ β2N/(N + 1) ,

and so taking β = N+1
N
· α
2

controls the Type 1 error.

In general, if k = N/2 (whether or not k is an integer), the overall test that rejects if

N/2 or more of the p-values are significant at level α/2 controls the Type 1 error at level

α. Equivalently, the test rejects if the median p-value is less than or equal to α/2. Thus, it

seems at this point there is a small but not unnoticeable price to pay for using multiple splits

rather than just one split.

Notice that the above argument holds whether or not all splits of size b are used. This is

important because
(
n
b

)
may be large, though finite sample control still holds. In fact, one

could in principle compute an arbitrary number, say M , of p-values based on subsamples of

even possibly different sizes. The only requirement is p-values must be valid in the sense of

(3.2). In order to ensure this, we always assume that subsamples or splits of the data are

chosen by picking M sets of indices from {1, . . . , n} either deterministically or at random,

but without regard to the values of X1, . . . , Xn. Furthermore, a set of of b1 indices could

be chosen to compute a p-value while using an independent subsample of b2 indices that

would dictate which test statistic one might use (for example, after dimension reduction),

with b1 + b2 ≤ n and possible < n. To put it bluntly, as long as we are not first looking at

the data to see which splits lead to significant p-values, then the method applies. Indeed,

if test statistics are computed on multiple splits of the data, and only the splits producing

significant results are chosen, then the conservative method may no longer control the Type

1 error rate.

Rather than the median p-value, one can look at the rth quantile. So, if k is the smallest

integer ≥ rM , then, we could take β = αk/M ≈ αr and control the Type 1 error. We state

the procedure as follows.

Procedure 3.1. (Conservative Method of Combining p-values)

• Choose M splits of the data independently of the observed data values.
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• For each split, Sn,i, compute a p-value satisfying equation (3.2).

• Fix a value r ∈ (0, 1].

• Reject H0 if the proportion of p-values less than or equal to αr is at least r.

The fact that Procedure 3.1 controls the overall rejection rate of H0 at level α is recorded

next in Theorem 3.1. All proofs are given in the appendix.

Theorem 3.1. For each of M splits of the data, a test of a null hypothesis H results in

p-values that satisfy (3.2). Let B be the number of such tests which reject H at level β, i.e.

with p-values ≤ β. For any 0 < r < 1, consider the overall procedure which rejects H if the

proportion of rejections, B/M , is greater than or equal to r. Then,

P{Type 1 error} ≤ β/r .

Hence, if each test based on a split Sn,i is tested at level β = rα, then the probability of a

Type 1 error is bounded above by α.

This method requires a choice of r and M and the power of the overall test can be quite

sensitive to the values chosen. Recommendations based on theoretical and numerical results

are given in the Supplement.

3.1.1 Interesting Special Cases

A particularly interesting case of Theorem 3.1 is basing an overall test on the median p-value.

Corollary 3.1. Take M splits of the data, with indices chosen independently of the data.

If p-values satisfy (3.2), then the overall test that rejects the null hypothesis if the median

p-value is less than α/2 is of level α.

Rather than basing an overall test on the quantiles of the p-values, a conservative test can

be based on the extremes, rejecting for small values of either the minimum or the maximum

of the p-values.

Corollary 3.2. Take M splits of the data, with indices chosen independently of the data.

If p-values satisfy (3.2), then the overall test that rejects the null hypothesis if the smallest

p-value is less than α/M is of level α. Similarly, the overall test that rejects if the maximum

p-value is smaller than α is of level α.

While it is not immediately obvious how the tests based on the median or minimum of the

p-values compare to simply using a single split of the data, it is clear that using the maximum
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will result in a loss of power over only using a single split. Typically, the loss of power when

using the maximum is relatively small when the p-values are heavily correlated (when a large

fraction of the data is used for testing) and fairly large when the p-values are not heavily

correlated. Conversely, the test based on the minimum tends to be less conservative when

the p-values are independent (when a small fraction of the data is used for testing).

3.2 Conservative Method Based on Average p-values

The following procedure replaces the median p-value of Corollary 3.1 with the sample mean

of the p-values, and the same cutoff of α/2.

Procedure 3.2. • Choose a fixed number, say M , splits of the data independently of the

observed data values.

• For each split, Sn,i, compute a p-value satisfying equation (3.2).

• Reject H0 if 1
M

∑M
m=1 p̂n,m is smaller than α/2.

The validity of this procedure relies on the fact that twice the average p-value is again a

p-value, which is established by Ruschendorf (1982) and discussed further in Vovk and Wang

(2012).

Theorem 3.2. (Ruschendorf, 1982) Suppose that p-values p̂n,1, ..., p̂n,M satisfying equation

(3.2) are computed over M ≤ N splits of the data. Then, for any α, b, and M ,

P

(
1

M

M∑
m=1

p̂n,m ≤
α

2

)
≤ α .

Thus, either the median p-value or the average p-value can be compared with α/2 in order

to control the Type 1 error at level α. Or to put it another way, twice the median p-value or

twice the average p-value serves as a valid p-value for the overall test.

3.3 Conservative Methods Based on Concentration Inequalities

We derive alternative conservative methods of combining p-values by exploiting a U -statistic

structure when p-values are computed over smaller subsamples of the data. As will be seen,

the resulting methods sometimes provide a striking improvement. If p-values are computed

based on subsamples of size b (where b = b1 + b2 and b1 of the observations are used for

testing and b2 for “selection”), then the average p-value is a U -statistic of degree b. So, rather

than using Markov’s inequality (3.3), we can start by exploiting an exponential inequality

of Hoeffding (1963) who provides the following bound on U-statistics. (Note that we are
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specifically not using b2 = n− b1 since b will typically be much less than n in order for the

approach to provide an improvement, as will be seen.)

Lemma 3.1. (Hoeffding, 1963) Let X1, ..., Xn be independent random variables. For n ≥ b,

define the random variable

U ..=
1

n(b)

∑
g(Xi1 , ..., Xib) , (3.4)

where the sum is taken over all b-tuples of distinct positive integers not exceeding n and n(b)

is the number of such tuples. Then, if g is bounded below by some constant c and above by

some constant d,

P (U − EU ≥ t) ≤ exp
[
−2kt2/(d− c)2

]
(3.5)

where k = bn/bc is the largest integer smaller than n/b.

Remark 3.1. Two points are notable in order to apply this inequality to our problem. First,

we do not need to assume that g is symmetric (as it need not be if part of the subsample

is used for testing and part of it is used for selection). Second, it is not crucial that the

statistic U in (3.4) is computed by averaging over all n(b) = n(n− 1) · · · (n− b+ 1)-tuples of

size b. Consider the balanced U -statistic, say U ′, which is constructed as follows. First, for

some permutation (i1, . . . , in) of (1, . . . , n), take an average of g computed on the k = bn/bc
subsamples of size b of distinct indices

1

k

[
g(Xi1 , . . . , Xib) + g(Xib+1

, . . . , Xi2b) + · · ·+ g(Xi(k−1)b+1
, . . . , Xikb)

]
. (3.6)

The choice of permutation of indices can be at random or deterministic, but independent of

the observations. Then, U ′ can be obtained by averaging (3.6) over additional permutations of

indices (chosen independent of the data). So, the sampling scheme can just be taking just one

identity permutation, all permutations (to yield the complete U), or averaging over random

choices of permutations, as long as there includes an “inner” average over k independent

components. Note that, if k = n/b, then each observation is used in an equal number of

splits.

Lemma 3.2. Lemma 3.1 holds verbatim with U replaced by U ′, if the incomplete U -statistic

U ′ is computed as described in Remark 3.1, even if g is not symmetric.

The proof of Lemma 3.2 follows Hoeffding’s proof of the inequality stated in Lemma 3.1.

We now apply these lemmas when the function g is a p-value computed on a subsample

of size b. Suppose that b1 observations are used for testing and b2 observations are used

for selection. Using the bound of Hoeffding (1963), stated in Lemma 3.1 as well as that in

Lemma 3.2, yields the following procedure.

13



Procedure 3.3. • Choose permutations and average p-values over subsamples as de-

scribed in Remark 3.1.

• Reject H if the average of p-values computed over these splits is smaller than 1/2 −√
− log(α)/2k, where k = bn/bc.

Error control of Procedure 3.3 is provided in the next result.

Theorem 3.3. Let p̄n,b be the average p-value computed over all n(b)-tuples of size b, and let

p̄′n,b be the average p-value obtained by sampling some number of permutations as described

in Remark 3.1. Then, if H0 is true,

P

(
p̄n,b −

1

2
≤ −

√
− log(α)/2k

)
≤ α , (3.7)

where k = bn/bc. Consequently, Procedure 3.3 is level α. The same result holds with p̄n,b

replaced by p̄′n,b.

When α = .05, it is easily seen that if k = bn/bc is strictly larger than 6, the threshold

for rejection given by Procedure 3.3 is larger than the threshold given by Procedure 3.2 and

therefore Procedure 3.3 is preferable since it makes it easier to reject H0 while still controlling

Type 1 error. Otherwise, Procedure 3.2 is preferable. For instance, if k = 6 (i.e a sixth of the

data is used for testing and selection), the threshold given by Procedure 3.3 is 0.00036, but

if k = 7, the threshold is 0.03742. In contrast, the cutoff of α/2 = 0.025 is required for the

average p-value if using Procedure 3.2. With k = 10, the difference becomes more dramatic

with the cutoff of Procedure 3.3 being 0.113.

Next, we would like to develop a similar result for the median p-value computed over M

splits of the data. Let pb denote the p-value based on b observations and define

p̃n,b = mediani1,...,ibpb(Xi1 , ..., Xib) , (3.8)

where the median is taken over all n(b) b-tuples of distinct positive integers not exceeding n.

Analogously, if not all n(b) b-tuples are used, but instead M b-tuples are taken by sampling

permutations as described in Remark 3.1, then the median p-value over the restricted set is

denoted p̃′n,b.

Procedure 3.4. • Choose permutations and average p-values over subsamples as de-

scribed in Remark 3.1.

• Reject H if the median of p-values computed over these splits is smaller than 1/2 −√
− log(α)/2k.

Theorem 3.4. Theorem 3.3 holds verbatim when Procedure 3.3 is replaced by Procedure 3.4,

i.e., if the average p-values p̄n,b (or p̄′n,b) are replaced by median p-values p̃n,b (or p̃′n,b).

14



3.4 Combining Independent p-values

In the proofs of Theorems 3.1 and 3.4, the approach was to bound P{B ≥ k} , where B

is the number of p-values ≤ β (as in (3.3)). If M splits of the data are based on disjoint

subsamples of the data, then the p-values p̂1, . . . , p̂M are independent. Under H0 when each

p̂i is distributed as U(0, 1), B has the binomial distribution with parameters M and β. Hence,

for a given k, let cα,k satisfy

M∑
m=k

(
M

m

)
cmα,k(1− cα,k)M−m = α .

Procedure 3.5. Reject H0 if B ≥ k, where B is the number of rejections at level cα,k.

Procedure 3.5 is exact level α under independence, for any k. Alternatively, 1√
M

∑M
i=1 Φ−1 (p̂i)

is N(0, 1) under H0, which leads to the following level α procedure.

Procedure 3.6. Reject H0, if 1√
M

∑M
i=1 Φ−1 (p̂i) < zα.

Such methods of combining p-values are common in meta-analysis based on independent

studies; see Wilkinson (1951) and Hedges and Olkin (1985). For completeness, we include

the following modified procedure, which is level α under general dependence.

Procedure 3.7. Reject H0, if 1
M

∑M
i=1 Φ−1 (p̂i) < zα.

Remark 3.2. The conservative procedure for dependent p-values given by Procedure 3.1

rejects if the kth order statistic of the p-values is smaller than αk/M . Especially for large

values of k, cα,k can be substantially larger than αk/M . For example, when α = .05 and

M = 10, cα,k ≈ .2224 whereas αk/M = .025 when k = 5, and cα,k ≈ .4931 whereas

αk/M = .04 when k = 8.

4 Asymptotically Level α Methods of Combining Splits

Each of the methods in Section 3 provide valid tests combining p-values over (possibly)

arbitrarily many splits under very minimal assumptions. However, these methods are

conservative in the sense that their null rejection probabilities can be dramatically under the

nominal level, even asymptotically, and can lead to a loss of power.

Methods of combining p-values over many splits which are exact, or at least asymptotically

level α, may provide an improvement in power. In this section, we provide asymptotically

valid procedures under more restrictive assumptions than the methods presented in the

previous section.
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4.1 Combining p-values Over a Fixed Number of Splits

Suppose we are interested in testing a null hypothesis of the form

H0 : θ1 = · · · = θp = 0 .

for some parameters θ1, ..., θp. In many situations, each of the θi can be estimated by some

asymptotically normal statistic, say θ̂i, and a test statistic for H0 is a function of these

estimators. Of course, data splitting can be used in this setting to first identify a subset of

the parameters under consideration that may be non-zero to inform a choice of test statistic.

If only a fixed number of splits of the data are used to find p-values, the asymptotic joint

distribution of the test statistics can be estimated using asymptotic or resampling methods.

For certain methods of combining p-values over splits, such as taking the average or median

p-values, the limiting joint distribution of the test statistics can be used to simulate a critical

value for the overall test. We will justify the approach for a fixed number of splits. If the

number of splits grows with n but not too quickly, it may be possible to justify the approach,

though this requires further investigation.

Example 4.1. (Continuation of Example 2.1) For testing whether a mean vector is zero,

one can first select which means to include based on a subsample of size n− b and then apply

the Chi-squared test based on the remaining data of size b. If several p-values are computed in

this way, it may be possible to approximate the joint distribution. Suppose S = {1, ..., n/2}.
We could calculate two p-values: one from using S for selection and Sc for testing, and the

other using Sc for selection and S for testing. While there are many possibilities for combining

these two p-values, a natural choice might be to reject for small values of the average of the

p-values. The joint distribution is a function of
√
n/2

(
X̄1(S), ..., X̄p(S), X̄1(S

c), ..., X̄p(S
c)
)
,

which has an asymptotically normal limiting distribution. In this example, the continuous

mapping theorem ensures that simulating the distribution of the sum of the two p-values

computed on the limiting normal distribution of the test statistics gives an asymptotically

valid rejection region.

More generally, for a split Sn,k of the data, assume the resulting p-value, p̂n,k, can be

written as a function, p(·), of the statistics θ̂n,j(Sn,k), and θ̂n,j(S
c
n,k), for j = 1, ..., p; that is,

p̂n,k = p
(√

nkθ̂n,1(Sn,k),
√
n− nkθ̂n,1(Scn,k), ...,

√
nkθ̂n,p(Sn,k),

√
n− nkθ̂n,p(Scn,k)

)
,

where nk = |Sn,k|. For compactness of notation, write

Θn,k =
(√

nkθ̂n,1(Sn,k),
√
n− nkθ̂n,1(Scn,k), ...,

√
nkθ̂n,p(Sn,k),

√
n− nkθ̂n,p(Scn,k)

)
.

Suppose M splits of the data, Sn,k, k = 1, ...,M , are chosen such that (Θn,1, ...,Θn,M) has

(under H0) an asymptotically normal distribution with a covariance that can be found exactly
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or consistently estimated. Then, the asymptotic distribution of the average p-value

1

M

M∑
k=1

p̂n,k

can be approximated using the continuous mapping theorem provided the computed p-values

are an almost surely continuous function of the statistics. While here we use the average

p-value, the p-values can be combined using some other function f(·) of the p-values, such as

the median.

Appropriate cutoffs for combining p-values computed on a fixed number of splits can be

obtained by simulating from a multivariate normal distribution in cases where the asymptotic

variance Σ is known, or can be consistently estimated by some Σ̂. The method of combining

p-values over a finite number of splits of the data can be summarized as follows.

Procedure 4.1. • Choose M splits of the data either randomly or deterministically, but

independently of the observed data values.

• For each split, Sn,i, compute a p-value p̂n,i satisfying equation (3.2) that is a function

of an asymptotically normal estimator.

• Choose some function f , such as the average or median, of the p-values.

• Approximate the distribution of this function of the p-values by simulating from the

asymptotic null distribution of the test statistics, either N(0,Σ) or N(0, Σ̂) depending

on whether the variance is known or can be estimated.

• Reject H0 if f(p̂n,1, ..., p̂n,M ) is sufficiently extreme relative to the appropriate simulated

quantiles.

The asymptotic validity of this procedure is given by the following theorem.

Theorem 4.1. Suppose that M p-values satisfying (3.2) are computed as functions of

Θn,1, ...,Θn,M . If

(Θn,1, ...,Θn,M)
d−→ (Θ1, ...,ΘM)

where (Θ1, ...,ΘM) has a multivariate normal distribution with mean 0 and covariance Σ

(under H0), then for any function f(·) of the p-values,

f (p̂n,1, ..., p̂n,M)
d−→ f (p (Θ1) , ..., p (ΘM))

provided the set of discontinuity points of f (p (Θ1) , ..., p (ΘM)) has measure zero. Therefore,

an asymptotically level α test rejects if

f (p̂n,1, ..., p̂n,M) > fα .

where fα is the α quantile of f (p (Θ1) , ..., p (ΘK)).
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Remark 4.1. A commonly used choice of fixed splits is K-fold cross validation, where the

data is split into K folds, say D1, ..., DK, and each of M = K splits is given by the union of

K − 1 of the folds, i.e.

Sn,k = ∪i 6=kDi .

Example 4.2. Suppose that the θ̂n,j, j = 1, ..., p are asymptotically linear in the sense that

under H0,

θ̂n,j =
1√
n

n∑
i=1

ψj(Xi) + oP (1) .

for some known functions ψj satisfying E (ψj(Xi)) = 0 (under H0) and E
(
ψ2
j (Xi)

)
< ∞.

Suppose K splits of the data are chosen according to the K-fold cross validation method

described in Remark 4.1 and the statistics computed on each split Sn,k are θ̂nK ,j(Sn,k) and

θ̂n−nK ,j(S
c
n,k), where nK = n(K − 1)/K, which satisfy

θ̂nK ,j =
1
√
nK

∑
i∈Sn,k

ψj(Xi) + oP (1)

and

θ̂n−nK ,j =
1√

n− nK

∑
i∈Sc

n,k

ψj(Xi) + oP (1) .

Then, in the above notation,

(Θn,1, ...,Θn,K)
d−→ N(0,Σ)

where the entries of the covariance matrix Σ is given by the appropriate limiting variances

and covariances:

limV ar
(
θ̂nK ,j(Sn,k)

)
= limV ar

(
θ̂n−nK ,j(S

c
n,k)
)

= V ar (ψj(X1)) ,

limCov
(
θ̂nK ,j(Sn,k), θ̂n−nK ,l(S

c
n,k)
)

= limCov
(
θ̂n−nK ,j(S

c
n,k1

), θ̂n−nK ,l(S
c
n,k2

)
)

= 0 ,

limCov
(
θ̂nK ,j(Sn,k1), θ̂nK ,l(Sn,k2)

)
=
K − 2

K − 1
Cov (ψj(X1), ψl(X1)) ,

and

limCov
(
θ̂nK ,j(Sn,k1), θ̂n−nK ,l(S

c
n,k2

)
)

=
1√

K − 1
Cov (ψj(X1), ψl(X1)) ,

for any k, j, l, and k1 6= k2.

For each split of the data, means to be included in the test statistic can be chosen according

to which θ̂j(S
c
n,k) exceed some threshold t. Then a p-value can be obtained by the Chi-squared

approximation to ∑
j selected

(
θ̂j(Sn,k)

)2
.
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If the p-values are aggregated by taking the average of the p-values over each of the K splits,

then Theorem 4.1 ensures that the distribution of this overall test statistic can be approximated

by simulating from the appropriate normal distribution, and averaging the resulting p-values.

In this example, for any j and l, cov(ψj(X1), ψl(X1)) can be estimated by

1

n

n∑
i=1

(
ψj(Xi)− n−1/2θ̂n,j

)(
ψl(Xi)− n−1/2θ̂n,l

)
.

Under typical moment assumptions, these estimates, and the above formulas are enough to

give a consistent estimator of Σ.

Remark 4.2. In this setting, rather than simulating the asymptotic normal distribution, the

distribution can also be approximated using the bootstrap.

4.2 Combining Results Across a Growing Number of Splits

4.2.1 Average p-value Over All Splits

Ideally, using all splits of the data should improve power over using a fixed number of splits.

It was seen in Section 3.1 that the quantiles of the p-values computed over all splits can be

combined to give a conservative test. Results on U-statistics can be leveraged to give tests

which have asymptotic level α, i.e. not asymptotically conservative with a value strictly less

than α.

For a subsample of size b, consider using the first b1 observations in the split to select

a test statistic, and the remaining b2 observations to perform a test, so b = b1 + b2. Let

Sn,1, ..., SN,n be an enumeration of all such subsamples of size b1 and b2, so that N =
(
n
b

)(
b
b1

)
.

Let pb(·, . . . , ·) be a p-value computed on b observations. (Note that we are tacitly assuming

that pb is symmetric in its first b1 arguments as well as symmetric in its last b2 arguments.)

For each split Sn,i, compute a p-value p̂n,i = pb(Sn,i). Assume that the p-value satisfies

E(p̂n,i) = 1/2 under H0 (although the procedure is also valid whenever E(p̂n,i) ≤ 1/2 which

is guaranteed if 3.1 holds). Of course, we can consider the case where there is no selection,

so b1 = 0, but in general due to selection, pb is not a symmetric function of its b arguments.

However, we can symmetrize pb in the obvious manner by defining

pSb (x1, . . . , xb) =
1

b!

∑
i1,...,ib

pb(Xi1 , ..., Xib) ,

where the sum is taken over all permutations of {1, . . . , b}.
Then, the average p-value taken over all N combinations of b1 and b2 choices can be

expressed as

p̄n = p̄n(X1, . . . , Xn) =
1

N

∑
i1,...,ib

pSb (Xi1 , . . . , Xib) , (4.1)
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where the sum is taken over all combinations of b1 and b2 subsets of indices. In order to use

p̄n for inference purposes, we need to know its (approximate) distribution under the null

hypothesis. But importantly, p̄n as defined is a U -statistic of degree b. Therefore, we can use

Hoeffding’s methods in order to obtain the limiting distribution of p̄n, at least in the classical

case with fixed degree b. We will also consider the case where b→∞.

Define

p1,b(x1) = E[pSb (X1, . . . , Xb)|X1 = x1] ,

and

σ̃2
b = Var[p1,b(X1)]

A general CLT for U-statistics of growing degree is given in Theorem 6.1. The following

theorem specializes the result in Theorem 6.1 to the context of p-values. The corollary shows

how the assumptions of the first part simplify in our context because the Lindeberg Condition

always holds (since p-values are uniformly bounded by one). Note that, in the case b1 and

b2 are fixed (which means we are implicitly assuming the choice of pb is the same for all n

as well), then σ̃ = σ̃b does not depend on b (though it is easy to generalize if this is not the

case).

Theorem 4.2. Assume b = b1 + b2 satisfies b2/n→ 0. If for all δ > 0,

lim
n→∞

1

σ̃2
b

∫
|p1,b(x)|>δ

√
nσ̃2

b

p21,b(x)dP (x) = 0 (4.2)

then √
n
(
p̄n − 1

2

)√
b2σ̃2

b

d−→ N(0, 1). (4.3)

This result also holds if the p-values are computed over Mn uniformly randomly chosen splits

of the data provided n/Mn → 0.

Corollary 4.1. Suppose that b1 and b2 are fixed based on a fixed kernel (not depending on n

and possibly asymmetric) of degree b = b1 + b2 with n→∞, and σ̃ > 0. Then, (4.3) holds.

Corollary 4.2. If b2/n→ 0 and nσ̃b →∞, then (4.3) holds.

First, suppose the kernel pb and hence b are fixed, so that σ̃b = σ̃ does not depend on n

(or b). In order to use Corollary 4.1 for inference purposes, we first need to verify that σ̃ is

not zero. This condition holds quite generally for the problems we consider; see Section 7.

Remark 4.3. Using this method requires some knowledge of the variance σ̃2
b . In some

applications, this variance can be computed exactly (for example in the single mean example

in the Supplement); however, it is typically easy to obtain a consistent estimator. This
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variance can be consistently estimated by the estimator in Equation 6.10 proposed in Section

6.2,

σ̂2
n =

1

n

(
n− 1

b− 1

)−1(
n− b− 1

b− 1

)−1∑
i,j

1

(2b− 1)!

∑(
p̂n,i −

1

2

)(
p̂n,j −

1

2

)
(4.4)

where the sum is taken over all pairs of splits Si and Sj such that |Si ∩ Sj| = 1 and the second

sum is taken over all permutations of the observations in these two splits. This estimator

is also a U-statistic of degree 2b − 1. So, for example, when b is fixed, σ̂n is consistent in

the sense σ̂n/σ̃
P−→ 1. This estimator is also consistent whenever the sum is taken over Mn

randomly chosen splits satisfying n/Mn → 0.

Using either the exact variance, or the estimated variance, the following procedure provides

an asymptotically level α overall test.

Procedure 4.2.

• Randomly choose Mn ≤ N splits of the data where n/Mn → 0.

• For each split, Si, compute a p-value p̂n,i satisfying equation (3.2).

• Reject H0 if the average of the p-values is smaller than 1/2 − z1−α
√
b2σ̃n/n if σ̃b is

known, or smaller than 1/2− z1−α
√
b2σ̂n/n where σ̂2

n is defined by (4.4).

Consequently, an overall asymptotically level α test is obtained by rejecting the null

hypothesis whenever the average p-value is smaller than 1/2− z1−α
√
b2σ̃b.

4.2.2 Average Test Decisions Over All Splits

Instead of averaging p-values, an overall level α test can be performed based on the average

of test decisions computed over splits of the data. For each split Sn,i of size b = b1 + b2

suppose that φn,i = φb(Sn,i) is the test decision from a level β (not necessarily equal to α) test

which used the first b1 observations in the split to select a test statistic, and the remaining b2

observations to perform the test. Assume that the test decisions satisfy E(φn,i) = β under

H0 (that is, the tests are of level β), but note that if the tests on subsamples are conservative,

the procedure based on the average test decision will be (asymptotically) conservative.

Define

φ̃1,b(x1) = E

(
1

b!

∑
i1,...,ib

φb (Xi1 , ..., Xib) |X1 = x1

)
where the sum is taken over all permutations of {1, ..., b} and

ζ̃2b = var
(
φ̃1,b (X)

)
.
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An overall testing procedure which rejects if the proportion of rejections at level β is

sufficiently large can be performed as follows.

Procedure 4.3.

• Randomly choose Mn ≤ N splits of the data where n/Mn → 0.

• For each split, Si, compute a test decision φn,i at level β.

• Reject H0 if the average of the test decisions is larger than β + z1−α

√
b2ζ̃2b /n if ζ̃b is

known, or smaller than β + z1−α

√
b2ζ̂2n/n if the variance is estimated as outlined in

Remark 4.4.

Once again, the validity of this procedure relies on the asymptotic normality of the average

of the test decisions which is given in the following theorem.

Theorem 4.3. Suppose that b1 and b2 are either fixed, or growing in such a way that b2/n→ 0.

If for all δ > 0,

lim
n→∞

1

ζ̃2b

∫
|φ̃1,b(x)|>δ

√
nζ̃2b

φ̃2
1,b(x)dP (x) = 0 (4.5)

then √
n
(

1
N

∑
i φn,i − β

)√
b2ζ̃2b

p−→ N(0, 1).

Consequently, an overall level α test can be performed based on the number of rejections

of tests at some possibly different level β on each subsample of the data. Note that, since

φ̃1,b is uniformly bounded, a sufficient condition for (4.5) is nζ̃b →∞.

Remark 4.4. This variance can be consistently estimated by the estimator in Equation 6.10

proposed in section 6.2 which in this situation becomes

ζ̂2n =
1

n

(
n− 1

b− 1

)−1(
n− b− 1

b− 1

)−1∑
i,j

1

(2b− 1)!

∑
(φn,i − β) (φn,j − β)

where the sum is taken over all pairs of splits Si and Sj such that |Si ∩ Sj| = 1 and the second

sum is taken over all permutations of the observations in these two splits. This estimator

is also consistent whenever the sum is taken over Mn randomly chosen splits satisfying

n/Mn → 0.

Note that this suggests the number of rejections at some level β can be much smaller than

required by the conservative method. For example, the conservative method requires that the

proportion of tests that reject at level β = α/2 be at least 1/2. The U-statistic method, on the

other hand, can reject if the proportion of rejections is larger than α/2+z1−α

√
b2ζ̃2n/n→ α/2.

Hence, the cutoff for rejection can be substantially smaller than 1/2, leading to much greater

power. Some simulations of this method are reported in the Supplement.
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4.2.3 The Median p-value Over All Splits

The conservative method derived in Section 3.1 rejects if at least half of the tests reject at

level α/2. Instead of using a portion of the data for selection and the remainder of the data

for testing, suppose that only b1 < n observations are used for selection, and b2 < n − b1
observations are used for testing. For each subsample, Sn,i of size b ..= b1 + b2, the resulting

p-value p̂n,i is assumed to be uniform (which is needed for an asymptotically exact test,

but sub-uniformity still yields an asymptotically valid test). The conservative method of

combining p-values rejects if the median p-value is smaller than α/2, however, in this setting,

there exists an asymptotically level α test which may provide some improvement in the cutoff

for rejecting (under some technical conditions discussed below).

Let p̂n,i denote the p-value computed on the ith split Sn,i of size b = b1 + b2. Define p̃n to

be the median of the p-values computed over all pairs of splits of size b1 and b2. Define

p̃b(x1, ..., xb; t) ..=
1

b!

∑
I {pb(xi1 , ..., xib) > 1/2 + t} ,

where the sum is extended over all permutations of 1, ..., b. Also define

ζ̃1,b(t) = Var(p̃1,b(X; t)) ,

where

p̃1,b(x; t) = E(p̃b(x,X2, ..., Xb; t)) .

An overall test based on the median p-value can be performed as follows.

Procedure 4.4.

• Randomly choose Mn ≤ N splits of the data where Mn/N → 0.

• For each split, Si, compute a p-value p̂n,i satisfying equation (3.2).

• Reject H0 if the median p-value is smaller than 1/2− z1−α
√
b2ζ̃1,b(0)/n.

Under some regularity conditions, this procedure asymptotically controls the Type I error

rate at level α. The following is a special case of a more general result for M-statistics as

given in Theorem 6.2.

Theorem 4.4. Suppose that b1 and b2 are either fixed, or growing in such a way that b2/n→ 0

and that for any fixed t and δ > 0,

lim
n→∞

1

ζ̃1,b

∫
|p̃1,b(x;t)|>δ

√
nζ̃1,b

p̃21,b(x; t)dP (x) = 0 .
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and

lim
n→∞

ζ̃1,b

√ ζ̃1,b(0)b2

n
t

 /ζ̃1,b(0)→ 0

Then, under H0, √
n

b2ζ̃1,b
(p̃n − 1/2)

d−→ N(0, 1).

Remark 4.5. This variance can be consistently estimated by the estimator in Equation 6.10

proposed in section 6.2 which in this case becomes

ζ̂2n =
1

n

(
n− 1

b− 1

)−1(
n− b− 1

b− 1

)−1∑
i,j

1

(2b− 1)!

∑
(I {p̂n,i > 1/2} − 1/2)

· (I {p̂n,j > 1/2} − 1/2)

where the sum is taken over all pairs of splits Si and Sj such that |Si ∩ Sj| = 1 and the second

sum is taken over all permutations of the observations in these two splits. This estimator

is also consistent whenever the sum is taken over Mn randomly chosen splits satisfying

n/Mn → 0.

5 Conclusion and Further Questions

Although using a single split of a dataset can improve power in some situations, typically

data splitting reduces power. We have proposed several conservative methods of combining

p-values over multiple splits of a dataset which are broadly applicable and give finite-sample

exact inference (when exact p-values are available). While these methods can be sensitive to

the fraction of data used for testing as well as the level of the individual tests, using half of

the data for testing, and using two splits of the data tends to outperform a single split. These

methods can be extremely conservative (even asymptotically), especially when many splits

of the data are used, leading to suboptimal performance. Asymptotically exact methods,

which are valid under more restrictive assumptions, can provide further improvements over

the conservative methods. One such approach exploits a U -statistic structure, and we have

provided some general theory for U -statistics with growing kernel size. These methods, when

applicable, can give comparable, if not better, performance than full data tests.

The supplement is devoted to applying the methods in this paper to several examples. We

treat the toy example of testing a single normal mean as a test case. Here, we can calculate the

local limiting power of the various methods because the analysis is more tractable. Perhaps

surprisingly because there is no selection or dimension reducing applied, the limiting power

attains the optimal limiting power of the usual UMP test. Cases with selection, such as
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the multivariate mean are less tractable but simulations are given to compare the various

procedures.

We have provided the groundwork for multiple split testing methods with rigorous Type 1

error control in finite samples or asymptotically. Yet, many questions remain for future work,

such as:

• Procedures 3.1 are 3.3 are generally applicable, but they are a family of methods,

depending on the choice of quantile as well as choices for the number and size of

the splits. We have provided some recommendations based on simulations on the

supplement, but further work is needed to specify these parameters.

• How to choose among the now various methods? We have been able to calculate limiting

power in some situations, but further technology is needed to advance further.

• Combining multiple splits of the data can be helpful for improving power in testing.

Can multi-split methods be used to construct shorter confidence intervals than using a

single split?

• The U -statistic results suggest that using a larger number of splits is preferable. In

the case of testing for a single mean, the complete U -statistic base on the average

p-value is asymptotically as powerful as the UMP test. When an insufficient number of

splits is used, the Incomplete U -statistic test can have worse power than the UMP test,

suggesting that it is better to use more splits. However, the conservative tests tend

to become more conservative when using many splits and may have worse power than

using fewer splits. It would be useful to refine the rejection regions for the conservative

method to perform better when many splits are used.

• The U -statistic methodology is fairly restrictive regarding the amount of data used for

selecting and performing a test. Can these methods be refined to apply to using the

full data for each p-value, especially in the case where a large portion of the data is

used for selection.

• The results presented here have focused mainly on selection parameters to reduce

dimensionality of the testing problem. Does using a portion of the data to select a

test statistic (e.g. between a test based on a Chi-squared statistic or the max statistic)

perform well? That is, can we use a first split of the data to suggest an optimal or

adaptive test statistic to be used for the test data?

• In cases where finding the optimal portion of data used for testing is intractable, does

using splits of varying size work well?
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• Especially in cases such as high dimensional regression problems where variable screening

via data splitting is often necessary to achieve valid inference, it would be useful to

understand when using multiple splits of the data can improve power over a single split,

or perhaps even give improvements in performance relative to full data methods.

• The methods of this paper can be applied to multiple testing problems. Splitting has

a clear potential benefit. By using a portion of a data to informally distinguish true

null hypotheses from false ones, one many reduce the number of hypotheses tested in

the second portion of the data, thereby reducing the effect of multiplicity (or more

generally reweight hypotheses based on the first portion of a split). Many multiple

testing methods take as input individual p-values for the individual tests. So, as an

example, twice the median or average p-value computed over splits is a valid p-value

for the individual tests. Less conservative construction of p-values based on the results

in Section 4 can also be used. Indeed, the marginal p-values for each test can be used

as input into some well=known multiple testing procedures. Usually such methods

assume a least favorable configuration of p-values (such as the Holm procedure) or some

kind of dependence structure (such as the Benjamini-Hochberg procedure). Can we

refine these methods by approximating the joint distribution of the marginal p-values,

especially when these p-values use split samples for selection?

• In multiple testing problems, allocating a first split of the data may bring some new

advantages. We mention two. In the challenging directional errors problem when testing

many two-sided parameters, the first portion of the data can be used to not only reduce

the number of parameters tested but the direction in which the parameters are tested

(so that in the second phase one is tested a reduced number of one-sided hypotheses).

Another avenue of new methodology is offered by the following. When hypotheses are

ordered, it is well-known that one can test them sequentially, each at level α, without

having to adjust for multiplicity. Therefore, one might use the first split of the data

to suggest an ordering by significance in the first split. In both of these problems,

using one split of the data is straightforward to control multiple testing error rates, but

combining over many splits of the data offers the possibility of improved power.

6 Appendix A

In this section, some general results are developed for U -statistics with growing kernel order,

as well as the corresponding M -statistic.
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6.1 A General U-statistic CLT Under Growing Kernel Order

Suppose X1, . . . , Xn are i.i.d. P . Consider the U-statistic

Un(X1, ..., Xn) =

(
n

k

)−1∑
hk(Xi1 , ..., Xikn

)

where hk is a symmetric kernel of order k = kn, and the sum is taken over all
(
n
k

)
combinations

of k observations taken from the sample. We specifically allow the order k = kn of the kernel

hkn to depend on n, as does the kernel itself. For cleaner notation, we may just write k and

hk rather than kn and hkn , but we will allow k to be fixed as well as k → ∞ as n → ∞.

(Note that, if hk were not symmetric in its arguments, it can always be symmetrized by

further averaging. So, for the purposes of the CLT, we will assume hn is symmetric.) Define

θk = E(hk(X1, ..., Xk)), and

ζ1,k = Var(h1,k(X)) ,

where

h1,k(x) = E(hk(x,X2, ..., Xk)) .

Sufficient conditions for asymptotic normality of such U -statistics are given in Mentch

and Hooker (2016), but their conditions are not general enough to apply to our setting. In

particular, they assume ζ1,k 9 0, which as we will see fails for our applications. (Indeed, if h

is a p-value based on a subsample of size kn and the null hypothesis holds, then it must be

the case that ζ1,k is of order 1/kn → 0, and typically this is the exact order; thus, ζ1,k → 0.)

First, define for 1 ≤ c ≤ k,

hc,k(X1, . . . , Xc) = E[hk(X1, . . . , Xk)|X1, . . . , Xc]

and

ζc,k = V ar(hc,k(X1, . . . , Xc)) , (6.1)

so that ζk,k is the variance of the kernel based on a sample of size k equal to the order of

the kernel. In our applications, the kernel will typically be a p-value and hence uniformly

bounded, so that the ζc,k are also uniformly bounded as c, k, and n vary.

Remark 6.1 (Simple Consistency). Under weak conditions, Un is consistent in the sense

Un − θn
P−→ 0. It suffices to show V ar(Un)→ 0. But, as is well-known, V ar(Un) ≤ kζk,k/n.

So if the ζk,k are uniformly bounded (which follows if the kernels are uniformly bounded),

and k/n→ 0, then consistency follows.

The theorem below applies in a triangular array setup, where n i.i.d. observations are i.i.d.

Pn. Then, quantities like ζc,k in (6.1) are computed under Pn.
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Theorem 6.1. Assume the order k = kn of the kernel hk satisfies k2/n→ 0. Further assume

that ζk,k/kζ1,k is bounded.

(i) Then,
nV ar(Un)

k2ζ1,k
→ 1 . (6.2)

(ii) If, in addition, for all δ > 0,

lim
n→∞

1

ζ1,k

∫
|h1,k(x)|>δ

√
nζ1,k

h21,k(x)dPn(x) = 0 (6.3)

then √
n (Un(X1, ..., Xn)− θn)√

k2ζ1,k

d−→ N(0, 1). (6.4)

This result also holds for the “incomplete” U-statistic which is the average of the kernels

computed over Mn randomly and uniformly chosen subsamples of the data provided n/Mn → 0.

Proof of Theorem 6.1. Following, for example, the argument in van der Vaart (1998), it

suffices to show V ar(Un)/V ar(Ûn)→ 1, where

Ûn =
kn
n

n∑
i=1

φ1,k(Xi) . (6.5)

Indeed, Theorem 11.2 of van der Vaart (1998) applies not only for fixed k but when k = kn →
∞. As is well-known (and argued in the proof of Theorem 12.3 of van der Vaart (1998)),

V ar(Un) =
k∑
c=1

(
n

k

)−1(
k

c

)(
n− k
k − c

)
ζc,k , (6.6)

where

ζc,k = Cov [hk(X1, . . . , Xc, Xc+1, . . . , Xk), hk(X1, . . . , Xc, Xk+1, . . . , X2k−c)] (6.7)

is the covariance between the kernel based on two data sets with exactly c variables in

common; by conditioning on X1, . . . , Xc, it is readily seen that (6.1) and (6.7) agree. First

note that the c = 1 term in (6.6) divided by V ar(Ûn) = k2ζ1,k/n tends to one, i.e.

k

(n
k)

(
n−k
k−1

)
ζ1,k

k2

n
ζ1,k

=
(n− k)!(n− k)!

(n− 1)!(n− 2k + 1)!
→ 1 .

The last limit uses k2/n→ 0 and can be seen by applying Stirling’s formula, taking logs and

using a Taylor’s expansion. What remains is to show that the sum from c = 2 to c = k in

(6.6) divided by k2ζ1,k/n tends to 0. But,∑k
c=2

(
n
k

)−1(k
c

)(
n−k
k−c

)
ζc,k

k2

n
ζ1,k

≤

∑k
c=2

1
c!

[
k!

(k−c)!

]2
(n−k)!
n!

(n−k)!
(n−2k+c)!ζc,k

k2

n
ζ1,n
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≤
∑k

c=2
k2c

c!
1

(n−k+1)c
ζc,k

k2

n
ζ1,k

≤
k∑
c=2

1

c!
εc−1n ζc,k/ζ1,k , (6.8)

where

εn =
k2

n− k + 1
.

Using the inequality ζc,k ≤ cζk,k/k (see Hoeffding (1948)) gives that (6.8) is bounded above

by

ζk,k
kζ1,k

k∑
c=2

1

(c− 1)!
εc−1n ≤ ζk,k

kζ1,k

k−1∑
j=1

εjn =
ζk,k
kζ1,k

· εn − ε
k
n

1− εn
. (6.9)

The second factor in the last expression for (6.9) tends to zero since εn → 0. Thus, as long as

ζk,k/kζ1,k stays bounded, the result follows.

Corollary 6.1. Under the above notation, if k2/n→ 0, the kernel hk is uniformly bounded

(both as k and the data vary), and kζ1,k 9 0, then asymptotic normality (6.4) holds.

Proof of Corollary 6.1. Since the hk are uniformly bounded, so are the ζk,k. Hence,

the condition in Theorem 6.1 ζk,k/kζ1,k is bounded, since kζ1,k 9 0. Moreover, the Lindeberg

condition ( 6.3) necessarily holds because nζ1,k = (n/k) · kζ1,k → ∞, so that the region of

integration in the integral is empty for large n.

Remark 6.2. In our applications, the condition that kζ1,k 9 0 holds because kζ1,k is of strict

order one.

6.2 Estimating the Variance

In order to use Theorem 6.1, we may require a consistent estimator of ζ1,k. Note that ζ1,k

can be equivalently expressed as

ζ1,k = Cov(hk(X1, ..., Xk), hk(X1, Xk+1, ..., X2k−1)) =

E[h∗k(X1, . . . , X2kn−1)]− θ2k ,

and h∗k is a symmetric kernel of degree 2k − 1 given by

h∗k(X1, ..., X2k−1) =
1

(2k − 1)!

∑
hk(Xi1 , ..., Xik)hk(Xi1 , Xik+1

, ..., Xi2k−1
) (6.10)

where the sum is extended over all permutations of 1, ..., 2k − 1. Then, the U-statistic of

degree 2k − 1 with symmetric kernel h∗n − θ2k,

ζ̂1,n =

(
n

2k − 1

)−1∑
h∗k(Xi1 , ..., Xi2k−1

)− θ2k
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where the sum is taken over all subsamples of {1, ..., n} of size 2k−1, is an unbiased estimator

of ζ1,k. (Note that, in order to compute this estimator, one must know θ2k, which in our

applications is 1/4 under the null hypothesis. Otherwise, one can estimate θ2k by a U-statistic

of degree 2k in a similar fashion.) Define

ζ∗m,k = Cov(h∗k(X1, ..., Xm, ..., X2k−1), h
∗
k(X1, ..., Xm, X2k, ..., X4k−m−1)) .

Using Theorem 6.1 under the conditions based on the kernel h∗k rather than hk, one can

conclude
V ar(ζ̂1n)
(2k−1)2

n
ζ∗1,k
→ 1 . (6.11)

By Remark 6.1,

ζ̂1,n − ζ1,k
P−→ 0 (6.12)

if k/n→ 0 and the kernels are uniformly bounded. In order to show the stronger result

ζ̂1,n
ζ1,k

P−→ 1 , (6.13)

it suffices to show

V ar(ζ̂1,n/ζ1,k)→ 0,

or using (6.11), it suffices to show

(2k−1)2
n

ζ∗1,k
ζ21,k

→ 0 .

But if the hk are bounded, so are the h∗k and ζ∗m,k, and so it is sufficient to show k/(nζ21,k)→ 0

to finally conclude (6.13). (Note that if ζ1,k is of exact order 1/k, then this condition becomes

k3/n→ 0.) It then follows that (6.4) holds if ζ1,k is replaced by ζ̂1,n.

Remark 6.3. Wang and Lindsay (2014) propose a similar but alternative estimator of the

variance of a general U-statistic. They show consistency in the sense (6.12). The above

argument yields the stronger consistency result (6.13) even with k →∞.

6.3 Asymptotic Normality of the M-statistic

Suppose instead of using Un as an estimator, where the kernel is averaged over all subsamples

of size k of the data, we are interested in using the median of the values of the kernel computed

on all subsamples of size k, i.e.

Ũn ..= median {hk(Xi1 , ..., Xik)} ,
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which we refer to as an M -statistic. In this section, we do not assume hk is symmetric, and so

the median is taken over all n!/(n− k)! ordered indices i1, . . . , ik taken without replacement

from 1, . . . , n. We would like to prove a triangular array CLT for Ũn when k = kn varies with

n.

Suppose that hk has a c.d.f. Fk and that θ̃k satisfies Fk(θ̃k) = 1/2.

Define

h̃k(x1, ..., xk; t) ..=
1

k!

∑
I
{
hk(xi1 , ..., xik) > θ̃k + t

}
, (6.14)

where the average is taken over all permutations of 1, ..., k. Also define

ζ̃1,k(t) = V ar[φ̃1,k(X; t)]

with

φ̃1,k(x; t) = E[h̃k(x,X2, ..., Xk; t)] .

We will assume that the sequence {Fk} is asymptotically (as k = kn →∞) equidifferen-

tiable relative to the sequence θ̃k if, for any εk → 0,

Fk(θ̃k + εk)− Fk(θ̃k) = εkF
′(θ̃k) + o(εk) . (6.15)

We will apply (6.15) with the particular choice εk = δk defined by

δk =

√
ζ̃1,k(0)k2

n
.

Note that ζ̃1,k is bounded in k, so that if we assume that k2/n→ 0, then δk → 0. Then,

E (hn (X1, ..., Xk; δk)) = 1/2− F ′k(θ̃k)δk + o(δk) . (6.16)

Finally, assume that F ′k(θ̃k)→ f(θ̃), which is just some positive constant. (Note, f and θ̃

separately need not have meaning, but typically F ′k tends to some f and θ̃k → θ̃.)

Theorem 6.2. In the above notation, assume that, k2/n→ 0, kζ1,k(0) 9 0 and for any fixed

t

ζ̃1,k(δnt)/ζ̃1,k(0)→ 1 (6.17)

as n→∞. Then, √
n

ζ̃1,k(0)k2

(
Ũn − θ̃k

)
d−→ N(0, 1/f 2(θ̃)) .

Proof of Theorem 6.2: For any fixed t,

P

{√
n

ζ̃1,k(0)k2

(
Ũn − θ̃k

)
≤ t

}
= P

{
Ũn ≤ θ̃k + δkt

}
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= P


(
n

k

)−1∑
h̃k (Xi1 , ..., Xik ; δkt) ≤ 1/2


= P


√

n

ζ̃1,k(0)k2n

(
n

k

)−1∑(
h̃k(Xi1 , ..., Xik ; δkt)− [1/2F ′k(θ̃k)δk + o(δk)

)
≤ tF ′k(θ̃k)


Hence, this last expression has the same limit (if any) as

P

{√
n

ζ̃1,k(0)k2n
[Un(t)− E(Un(t)] ≤ tF ′k(θ̃k)

}
, (6.18)

where Un = Un(t) is a U-statistic with symmetric kernel h̃k(·; t) defined by

Un(t) =

(
n

k

)−1∑
h̃k(Xi1 , . . . , Xik ; δkt) .

But, by Corollary 6.1, √
n

k2ζ̃1,k(δkt)
[Un(t)− E(Un(t)]

d−→ N(0, 1) .

Using the assumption ζ̃1,k(δkt)/ζ̃k(0)→ 1 and Slutsky’s theorem gives that the limiting value

of (6.18) is → Φ
(
f(θ̃)t

)
.

7 Appendix B: Verification of Conditions in Corollary

4.1

In Corollary 4.1, we need to verify the condition σ̃b = σ̃ > 0. Here, we explain why this

condition holds quite generally in the problems we consider. Note that, in order for the

condition σ̃ > 0 to hold, we equivalently need p1,b(X1) to not be a constant with probability

one.

First consider the case where there is no selection. The easiest situation occurs when the

p-value is based on a function pb(x1, . . . , xb) (assumed symmetric) such that, for any fixed

xj, j ≥ 2, pb(x1, . . . , xb) is a strictly monotone decreasing function of x1. (Of course, it can be

strictly monotone decreasing as well; the point is that it can’t be increasing for some choice

of the xj, j ≥ 2, but decreasing for another choice.)

In this situation, the variance condition σ̃ > 0 holds. To see why, for any x < x′,

pb(x,X2, . . . , Xb) > pb(x
′, X2, . . . , Xb)

and so

p1,b(x) = E[pb(x,X2, . . . , Xb) > pb(x
′, X2, . . . , Xb) = p1,b(x

′) .

32



Therefore, p1,b(X1) cannot be constant with probability one unless X1 is constant with

probability one. As a function of x1, it can be weakly monotone, as long as it is not constant

with probability one.

For example, if pb(x1, . . . , xb) = 1 − Φ(Tb), where Φ(·) is the standard normal c.d.f.

and Tb = b−1/2
∑n

i=1 xi, then the monotonicity condition holds. More generally, assume

pb = 1−G(Tb), where Tb(x1, . . . , xb) is monotone (and not constant) and G(·) is some c.d.f.

(corresponding to the null distribution of Tb. Assume G is strictly increasing on its support

with density g. Then,

d

dx
p1,b(x) = −E

[
g(Tb(x,X2, . . . , Xb)]

d

dx
Tb(x,X2, . . . , Xb)

]
< 0

since g > 0 with probability one and d
dx
Tb(x,X2, . . . , Xb) > 0 with positive probability.

Sometimes, the monotonicity condition fails. For example, let Tb = b−1/2|
∑

i xi|. In

order to verify σ̃ > 0, note that, for any fixed x2, . . . , xb, Tb → ∞ as |x1| → ∞ and so

pb(x1, . . . , xb)→ 0 as |x1| → ∞. By dominated (or bounded) convergence, it follows that

p1,b(x1) = E[pb(x1, X2, . . . , Xb)]→ 0

as |x1| → ∞. But, for any finite x1, p1,b(x1) > 0, so that p1,n(X1) cannot be constant with

probability one.

For a slightly more complicated example, let Tb be the classical t-statistic and G be the

t-distribution with b − 1 degrees of freedom (or any other c.d.f. that is not constant in

[−1, 1]). Then, Tb doesn’t satisfy the monotonicity assumption. But, note that, for any fixed

x2, . . . , xb, Tb(x1, x2, . . . , xb)→ 1 as x1 →∞ and Tb(x1, . . . , xb)→ −1 as x1 → −∞. Again

by dominated convergence,

p1,b(x1) = E[pb(x1, X2, . . . , Xb)]→ 1−G(±1)

as x1 → ±∞, from which σ̃ > 0 follows easily.

Next, we consider a multivariate situation, but still with no selection. Let xi = (xi,1, . . . xi,d)

be a vector in d-dimensions. Consider the Chi-squared statistic

Tb(x1, . . . , xb) = b
d∑
j=1

x̄2j ,

where x̄j = b−1
∑b

i=1 xi,j. As before, let pb = 1 − G(Tb), where G is the Chi-squared

distribution with d degrees of freedom. if, for any j with |x1,j| → ∞, then Tb →∞ and so

pb(x1, x2, . . . , xb) → 0. By the same dominated convergence argument as above, it follows

that p1,b(x1) is not constant with probability one, and so σ̃ > 0 follows.

33



Finally, we consider the situation where pb is not symmetric because we allow selection.

Here b = b1 + b2 and pb(x1, . . . , xb) is symmetric in the first b1 variables (used for selection)

and also symmetric in the last b2 variables (used for testing). Now, the nonzero variance

condition corresponds to the projection of the symmetrized version of pb; that is, p̄b. Consider

a generic term in the average of p̄b given by pb(Xi1 , . . . , Xib) for some permutation (i1, . . . , ib)

of (1, . . . , b). If the index ij corresponding to 1 satisfies ij ≤ b1, so that x1 is used for selection,

then fixing Xij = X1 at x1 gives (by symmetry)

Epb(x1, X2, . . . , Xb1 , Xb1+1, . . . Xb1+b2) = E [Epb(x1, X2, . . . , Xb)|X2, . . . Xb1 ] . (7.1)

But, the inner expectation is, under the null hypothesis, equal to 1/2, because regardless of

the selection mechanism and choice of test statistic, we assume that we have constructed a

valid p-value conditional on selection. On the other hand, if the index corresponding to 1,

say ij, exceeds b1, so that X1 is used only for testing, then

Epb(X1, . . . , Xb1 , . . . , Xb−1, x) = E [Ep(X1, . . . , Xb1 , . . . , Xb−1, x)|X1, . . . , Xb1)]

Now, we can apply any of the above methods already dealing with testing alone. As an

example, consider again the Chi-squared statistic, but where now selection can determine

which components are tested. (For the sake of argument, if it is possible that none are

selected, we will nonetheless test based on either the most significant component, or simply

test all of them.) Then, since x is a vector of length d, if all of its components tend to ∞,

then pb(X1, . . . , Xb−1, x)→ 0, and so does its expectation. Thus, the projection based on the

U -statistic p̄b satisfies

p1,b(x) =
b1
b
· 1

2
+
b2
b
Epb(X1, . . . , Xb−1, x)→ b1

2b

as the components of x diverge, but clearly this is not the case for fixed components of

x, because the factor with the expectation will not be exactly zero. Hence, σ̃ > 0. Other

examples can be treated similarly.

8 Appendix C: Proofs of results in text

Proof of Theorem 3.1. Note that the proportion of rejections at level rα is

1

N

N∑
i=1

I {p̂n,i ≤ rα} .
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Using Markov’s inequality, the probability that the proportion of rejections is ≥ r is bounded

above by

P

(
1

N

N∑
i=1

I {p̂n,i ≤ rα} ≥ r

)
≤ 1

Nr
E

(
N∑
i=1

I {p̂n,i ≤ rα}

)
=

1

Nr
Nrα

= α .

Consequently, the level of the overall test is bounded by α.

Proof of Theorem 3.4: For fixed β let B be the number of p-values (out of the M) that

are ≤ β. Then,

P{p̃n,b ≤ β} = P{B ≥ M + 1

2
} = P{B − E(B)

M
≥

M+1
2
− E(B)

M
}

≤ exp

−2k

(
M+1
2
− E(B)

M

)2
 = exp

−2k

(
M+1
2
−MP{p̂b ≤ β}

M

)2


= exp

[
−2k

(
1

2
+

1

2M
− P{p̂b ≤ β}

)2
]
.

Since P{p̂b ≤ β} ≤ β, then for β < 1/2, we can further bound the above by

exp

[
−2k

(
1

2
+

1

2M
− β

)2
]
.

Therefore, we can choose β so that the last expression is α. The solution β∗ is

β∗ =
1

2
+

1

2M
−
√

log(α)

−2k
,

which is actually slight better than the bound in the theorem, since

α ≥ P{p̃n,b ≤ β∗} ≥ P{p̃n,b ≤
1

2
−
√

log(α)

−2k
} .

(Note that it is easy to see that the solution β∗ is always less than 1/2 as long as α ≤
exp(−1/2) ≈ .6, by using the inequality M ≥ k.) The same argument works for the

“incomplete” median p̃′n,b, since the inequality (3.5) holds for both the complete and incomplete

U -statistic (as long as subsamples are chosen by splitting permutations as described in Remark

3.1).
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Proof of Theorem 4.1. This result follows immediately from the asymptotic normality

of the test statistics as well as the continuous mapping theorem.

Proof of Theorem 4.2. This result follows from the U -statistic CLT Theorem 6.1 pre-

sented in Section 6.1.

Proof of Theorem 4.3. This result follows from the U -statistic CLT Theorem 6.1 pre-

sented in Section 6.1.

Proof of Theorem 4.4. This follows immediately from the M -statistic CLT Theorem

6.2 noting that the derivative of the distribution function of a uniform p-value is one.
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