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Overlapping Communities
Explain Core–Periphery
Organization of Networks
The paper presents a new paradigm for uncovering the modular structure of

complex networks.

By Jaewon Yang and Jure Leskovec

ABSTRACT | Networks provide a powerful way to study

complex systems of interacting objects. Detecting network

communitiesVgroups of objects that often correspond to func-

tional modulesVis crucial to understanding social, technolog-

ical, and biological systems. Revealing communities allows for

analysis of system properties that are invisible when consid-

ering only individual objects or the entire system, such as the

identification of module boundaries and relationships or the

classification of objects according to their functional roles.

However, in networks where objects can simultaneously be-

long to multiple modules at once, the decomposition of a

network into overlapping communities remains a challenge.

Here we present a new paradigm for uncovering the modular

structure of complex networks, based on a decomposition of a

network into any combination of overlapping, nonoverlapping,

and hierarchically organized communities. We demonstrate on

a diverse set of networks coming from a wide range of domains

that our approach leads to more accurate communities and

improved identification of community boundaries. We also

unify two fundamental organizing principles of complex net-

works: the modularity of communities and the commonly ob-

served core–periphery structure. We show that dense network

cores form as an intersection of many overlapping communi-

ties. We discover that communities in social, information, and

food web networks have a single central dominant core while

communities in protein–protein interaction (PPI) as well as

product copurchasing networks have small overlaps and form

many local cores.

KEYWORDS | Community detection; core–periphery structure;

ground-truth communities; networks

I . INTRODUCTION

Networks provide a way to represent systems of interacting

objects where nodes denote objects (people, proteins,

webpages) and edges between the objects denote interac-

tions (friendships, physical interactions, links). Nodes in

networks organize into communities [1], which often
correspond to groups of nodes that share a common pro-

perty, role or function, such as functionally related pro-

teins [2], social communities [3], or topically related

webpages [4]. Communities in networks often overlap as

nodes might belong to multiple communities at once.

Identifying such overlapping communities in networks is a

crucial step in studying the structure and dynamics of so-

cial, technological, and biological systems [2]–[5]. For ex-
ample, community detection allows us to gain insights into

metabolic and protein–protein interactions (PPIs), eco-

logical foodwebs, social networks like Facebook, collab-

oration networks, information networks of interlinked

documents, and even networks of copurchased products

[6]–[12]. In particular, communities allow for analysis of

system properties that cannot be studied when considering

only individual objects or the entire system, such as the
identification of module boundaries and relationships and

the classification of objects according to their functional

roles [13]–[17].
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Here we explore the community structure of a number
of networks from many domains. We distinguish between

structural and functional definitions of communities [18].

Communities are often structurally defined as sets of

nodes with many connections among the members of the

set and few connections to the rest of the network [1].

Communities can also be defined functionally based on the

function or role of community’s members. For example,

functional communities may correspond to social groups
in social networks, scientific disciplines or research groups

in scientific collaboration networks, and biological mod-

ules in PPI networks. The basic premise of community

detection is that these functional communities share some

common structural signature, which allows us to extract

them from the network structure.

Based on this distinction one can state that the goal of

community detection is to build a bridge between network
structure and function, that is, to identify communities

based on the network structure with the aim that such

structurally identified communities would correspond to

functional communities.

In this paper, we build on the above view of network

community detection and develop community detection

methods that identify functional communities based on

their structural connectivity patterns. We identify net-
works where we can obtain reliable external labels of

functional communities. We refer to such explicitly la-

beled functional communities as ground-truth communi-

ties [18]. We study structural properties of ground-truth

functional communities and find that they exhibit a par-

ticular structural pattern. We discover that the probability

of nodes being connected increases with the number of

ground-truth communities they share. Our observation
means that nodes residing in overlaps of ground-truth

communities are more densely connected than nodes in

the nonoverlapping parts of communities. Interestingly,

we also find that assumptions behind many existing over-

lapping community detection methods lead to the oppo-

site conclusion that the more communities a pair of nodes

shares, the less likely they are to be connected [6]–[11].

Thus, as a consequence, many overlapping community
detection methods may not be able to properly detect

ground-truth communities.

Based on the above observations, we develop a new

overlapping community detection method called the

community-affiliation graph model (AGM), which views

communities as overlapping ‘‘tiles’’ and the tile density

corresponds to edge density [19]. Fig. 1 illustrates the

concept. Our methodology decomposes the network into a
combination of overlapping, nonoverlapping, and hierar-

chically organized communities. We compare AGM to a

number of widely used overlapping and nonoverlapping

community detection methods [6], [7], [10], [20] and show

that AGM leads to more accurate functional communities.

On average, AGM gives 50% relative improvement over

existing methods in assigning nodes to their ground-truth

communities in social, coauthorship, product copurchas-

ing, and biological networks.

Finally, we unify two fundamental organizing princi-
ples of complex networks: overlapping communities and

the commonly observed core–periphery structure. While

network communities are often thought of as densely

linked clusters of nodes, in core–periphery network struc-

ture, the network is composed of a densely connected core

and a sparsely connected periphery [21]–[23]. Many large

networks may exhibit core–periphery structure. The net-

work core was traditionally viewed as a single giant com-
munity, and, therefore, it was conjectured that the core

lacks internal communities [24]–[27]. We unify those two

organizing principles and show that dense network cores

form as a result of many overlapping communities. More-

over, we find that foodweb, social, and web networks

exhibit a single dominant core while PPI and product co-

purchasing networks contain many local cores formed

around the central core.
Our methodology to decompose networks into commu-

nities provides a powerful tool for studying social,

technological, and biological systems by uncovering their

modular structure. Our work represents a new way of

studying networks of complex systems by bringing a shift

in perspective from defining communities as densely con-

nected nodes to conceptualizing them as overlapping tiles.

II . FROM STRUCTURAL TO FUNCTIONAL
DEFINITIONS OF COMMUNITIES

The traditional structural view of network communities is

based on two fundamental social network processes: tria-

dic closure [28] and the strength of weak ties theory [29],

[30]. Under this view, structural communities are often

defined as corresponding to sets of nodes with many

Fig. 1. Communities as tiles. (a) Communities in networks behave as

overlapping tiles. (b) Many methods view communities as clusters

with a homogeneous edge density and thus they may break the tiles.

(c) Our AGM methodology successfully decomposes the network into

different tiles (communities).
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‘‘strong’’ connections between the members of the commu-

nity and few ‘‘weak’’ connections with the rest of the net-

work [Fig. 2(a)]. However, in many domains, nodes may

belong to multiple communities at once, and thus the

notion of structural communities has also been extended to

include overlapping, hierarchical, and disassortative com-
munity structures [6], [31]–[34].

Despite great progress in the field, we find that extend-

ing the traditional structural view to overlapping commu-

nities leads to an unnoticed consequence that nodes in

community overlaps are less densely connected than

nodes in the nonoverlapping parts of communities

[Fig. 2(b)]. (Refer to the extended version of the paper

[35] for details.) We find this hidden consequence to be
present in many existing approaches to overlapping

community detection [6]–[11].

We examine a diverse set of six networks drawn from a

wide range of domains, including social, collaboration, and

copurchasing networks for which we obtain explicitly la-

beled functional communities, which we refer to as the

ground-truth communities [18]. For example, in social

networks, we take ground-truth communities to be social
interest-based groups to which people explicitly join, and

in product networks, ground-truth communities are de-

fined to correspond to categories of products [35]. Note we

define ground-truth communities based on common func-

tions or roles around which networks organize into com-

munities [18]. Ground-truth communities are not defined

based on some observed attribute or property that the

nodes share (for example, age, gender, or hometown in a
case of a social network) [6]. The idea behind ground-truth

communities is that they would correspond to true func-

tional modules in complex networks. While the obtained

ground-truth labels may sometimes be noisy or incom-

plete, consistency and robustness of the results suggest
that the ground-truth labels are overall reliable.1

By studying the structure of ground-truth communities

we find that two nodes are more likely to be connected if

they have multiple ground-truth communities in common

(Fig. 3). For example, in the LiveJournal online social

network (Table 1), the edge probability jumps from �10�6

for nodes that share no ground-truth communities to 0.1

for nodes that have one ground-truth community in com-
mon and keeps increasing all the way to 0.7 as nodes share

more communities [Fig. 3(a)]. This implies that the area of

overlap between two communities has a higher average

density of edges than an area that falls in just a single

community [Fig. 2(c)].

Our observation is intuitive and consistent across

several domains. For example, proteins belonging to

multiple common functional modules are more likely to
interact [2], people who share multiple interests have a

higher chance of becoming friends [36], and researchers

with many common interests are more likely to

collaborate [36].

A. Defining Structural Communities as Tiles
We think of communities as analogous to overlapping

‘‘tiles.’’ Thus, just as the overlap of two tiles leads to a

higher tile height in the overlapping area, the overlap of

two communities leads to higher density of edges in the

overlap. (Fig. 1 illustrates the concept.) The composition of
many overlapping communities then gives rise to the

global structure of the network.

Conceptually, our methodology represents a shift in

perspective from structurally modeling communities as

sets of densely linked nodes to modeling communities as

overlapping tiles where the network emerges as a result of

the overlap of many communities. Our structural defini-

tion of communities departs from the strength of weak ties
theory [30] and is consistent with the earlier social

network theory called the web of group affiliations [37],

which postulates that edges arise due to shared community

affiliations.

Our findings here also have implications for the under-

standing of homophily, which is one of the primary forces

that shape the formation of social networks [36]. Homo-

phily is the tendency of individuals to connect to others
with similar tastes and preferences. Based on [30], it has

been commonly assumed that homophily operates in

‘‘pockets,’’ and, thus, nodes that have neighbors in other

communities are less likely to share the attributes of

those neighbors [as in Fig. 2(a) and (b)]. In contrast, our

results are implying pluralistic homophily where the sim-

ilarity of nodes is proportional to the number of shared

memberships/functions, not just their similarity along a

Fig. 2. Three structural definitions of network communities. Networks

(top) and corresponding adjacency matrices (bottom), where rows/

columns denote nodes and dots denote edges: (a) two nonoverlapping

communities; (b) two overlapping communities where the overlap is

less connected than the nonoverlapping parts of communities; and

(c) two overlapping communities where the nodes in the overlap are

better connected. Based on (c), we structurally define communities as

analogous to ‘‘tiles,’’ where community overlaps lead to higher density

of edges.

1Networks with ground-truth communities can be downloaded from
http://snap.stanford.edu/agm.
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single dimension. In a multidimensional network, the

most central nodes are those that have the most shared

dimensions.

III . DECOMPOSITION OF NETWORKS
INTO COMMUNITIES

In order to model communities in a network, we define the

AGM [19]. In our model, edges of the underlying network

arise due to shared community memberships [Fig. 4(a)]

[38], [39]. The AGM parameterizes each community A
with a single parameter pA. Two nodes that belong to

community A then form an edge in the underlying network

with probability pA. Each community A generates edges

between its members independently; however, if two
nodes have already been connected, then the duplicate

edge is not included in the network.

The AGM naturally models communities with dense

overlaps [Fig. 4(a) and (b)]. Pairs of nodes that belong to

multiple common communities become connected in the

underlying network with a higher probability, since for

each shared community the nodes are given an indepen-

dent chance of forming an edge.

The flexible nature of the AGM allows for modeling a

wide range of network community structures, such as

nonoverlapping, hierarchically nested, and overlapping

communities [Fig. 4(c)–(e)]. Given a bipartite community

affiliation graph and a probability pA for each community

A, the AGM allows us to generate synthetic networks with
realistic community structures, a procedure useful in and

of itself.

Using the AGM, we can also identify and analyze com-

munity structure of real-world networks. We accomplish

decomposition of a given network into communities by

fitting the AGM to the network with tools of statistical

inference. We combine a maximum-likelihood approach

with convex optimization and a Monte Carlo sampling al-
gorithm on the space of community affiliation graphs [19],

[35], [40]. This technique allows us to efficiently search for

the community affiliation graph that gives the observed

network the greatest likelihood. To automatically deter-

mine the number of communities in a given network, we

Table 1 Network Statistics and Properties of Detected Communities. We Consider the Facebook Ego-Network of a Particular User, the Full LiveJournal

Online Social Network, the Florida Bay Foodweb Network, the Stanford University Web Graph, the Literature-Curated Saccharomyces Cerevisiae

PPI Network, and the Amazon Product Copurchasing Network. Network Statistics: N: Number of Nodes; E: Number of Edges; hCi: Average Clustering

Coefficient; D: Effective Diameter; hki: Average Node Degree. Properties of Detected Communities: K: Number of Communities; hSi: Average
Detected Community Size; hAi: Average Number of Community Memberships Per Node. The Networks Vary From Those With Modular to Highly

Overlapping Community Structure and Represent a Wide Range of Edge Densities. While the Number of Communities Detected by AGM Varies, the

Average Community Size Is Quite Stable Across the Networks. Average Number of Community Memberships Per Node Reveals That Communities in the

Foodweb Overlap Most Pervasively, While in PPI and Social Networks Overlaps Are Smallest

Fig. 3. Community overlaps have higher edge density than the nonoverlapping parts of communities. Edge probability PðkÞ as a function of

the number of common community memberships k (a) in the social network and (b) in the product copurchasing network (Table 1). Results in

(a) and (b) suggest that, as nodes share multiple communities, they are more likely to be connected, which leads to higher edge density in

community overlaps, as illustrated in Fig. 2(c).
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apply techniques from statistical regularization and sparse
model estimation [35].

IV. ACCURACY OF DETECTED COMMUNITIES

Next, we aim to infer functional communities based only

on the structure of a given unlabeled undirected network.

A. Qualitative Evaluation
As an illustrative example, we consider a Facebook

friendship network of a single user’s friends [Fig. 5(a)

and Table 1]. In order to obtain labels for ground-truth

communities, we asked the user to manually organize his

Facebook friends into communities. The user classified

his friends into four communities corresponding to his

Fig. 4. Community-affiliation graph model (AGM) [19]. (a) Squares represent communities and circles represent the nodes of a network.

Edges represent node community memberships. For each community A that two nodes share they create a link independently with probability pA.

The probability that a pair of nodes u, v creates a link is thus pðu;vÞ ¼ 1�
Q

A2Cuv
ð1� pAÞ, where Cuv is the set of communities that u and v share.

If u and v do not share any communities, we assume they link with a small probability ". (b) Network generated by the AGM in (a). As pairs

of nodes that share multiple communities get multiple chances to create edges, the AGM naturally generates networks where nodes in the

community overlaps are more densely connected than the nodes in nonoverlapping regions. (c)–(e) AGM is capable of modeling any combination

of (c) nonoverlapping, (d) hierarchically nested, as well as (e) overlapping communities.

Fig. 5. An example on a Facebook friendship network of a particular user. (a) Facebook friendship network of a single user. (b) The same

network but with communities explicitly labeled by the user: high school friends, colleagues at the workplace, and university friends with whom

the user plays basketball and squash. Communities are denoted by filled regions. Note that nodes in the overlap of communities have higher

density of edges. (c)–(e) Results of applying (c) clique percolation, (d) link clustering, and (e) mixed-membership stochastic block model to the

Facebook network.
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high school, workplace, and two communities of

university friends. The visualization of the same network
using communities in Fig. 5(b) shows that the network

in Fig. 5(a) is in fact composed of the overlaps of the

four communities. In this example, the goal of commu-

nity detection is to identify the communities in Fig. 5(b)

based only on the connectivity structure of the network

in Fig. 5(a).

Due to an implicit assumption that nodes in commu-

nity overlaps are less densely connected than nodes in the
nonoverlapping parts of communities [Fig. 2(a)], many

overlapping community detection approaches [6]–[11] fail

to properly detect communities in this network. For

example, Fig. 5(c)–(e) illustrates the result of applying

clique percolation [10], link clustering [6], and the mixed-

membership stochastic block (MMSB) model [7] to the

Facebook network in Fig. 5(a). We also give a formal

argument that explains the behavior of these methods in
Appendix I-A and the extended version [35].

However, when we use the AGM to analyze the

Facebook network, the AGM automatically detects four

communities (Fig. 6), which is the same as the number

identified by the user. Moreover, the communities de-

tected by the AGM nearly perfectly correspond to com-

munities identified by the user. The AGM correctly

determines community overlaps and community member-
ships for 94% of the user’s friends.

B. Quantitative Evaluation
We also perform a large-scale quantitative evaluation

on AGM on biological, social, collaboration, and product
networks where functional communities are explicitly

labeled [18]. The networks represent a wide range of

sizes and edge densities, as well as amounts of

community overlap. We compare the AGM to a number

of widely used overlapping and nonoverlapping commu-

nity detection methods [6], [7], [10], [20] and quantify

the correspondence between the explicitly labeled

ground-truth communities and the communities detected
by a given method. The performance metrics quantify

the accuracy of the method in assigning nodes to their

ground-truth communities. (Refer to Appendix I-B for

further details.)

On a set of social, collaboration, and product

networks, AGM on average outperforms existing meth-

ods by 50% in four different metrics that quantify the

accuracy in assigning nodes to their ground-truth
communities [Fig. 11(a)]. In particular, AGM gives a

50% relative improvement over clique percolation [10].

Link clustering [6] detects overlapping as well as

hierarchical communities and AGM improves 61% over

it. Similar levels of improvement are achieved when

comparing AGM to other overlapping and nonoverlap-

ping methods [7], [20]. Furthermore, AGM gives a 14%

relative improvement over link clustering using the same
networks and the same data-driven benchmarks as used

in the link clustering work [6].

Furthermore, we also experiment with AGM on a set

of four different biological PPI networks. Remarkably,

even though AGM was developed based on insights

gained on primarily social networks, we find that AGM

performs surprisingly well on biological networks as

well. As performance metrics, we compute the average
statistical significance of detected communities (p-value)

for the three types of gene ontology (GO) [41]. We con-

sider negative logarithm of average p-values for each of the

three GO term types as three separate scores. On average,

the AGM outperforms link clustering by 150%, the clique

percolation method (CPM) by 163%, Infomap by 148%,

and the MMSB model for 12 times [Fig. 11(b)]. Fur-

ther experimental details are in the Appendixes III, IV,
and [35].

Overall, the AGM approach yields substantially more

accurate communities. The success of our approach

relies on the AGM’s flexible nature, which allows the

AGM to decompose a given network into a combina-

tion of overlapping, nonoverlapping, and hierarchical

communities.

V. COMMUNITIES, PLURALISTIC
HOMOPHILY, AND
CORE–PERIPHERY STRUCTURE

The AGM also makes it possible to gain well-founded in-

sights into the community structure of networks. In parti-

cular, we discover that overlapping communities lead to a

global core–periphery network structure. Core–periphery
structure captures the notion that many networks decom-

pose into a densely connected core and a sparsely con-

nected periphery [21], [22]. The core–periphery structure

is a pervasive and crucial characteristic of large networks

[23], [24], [42].

We discover that a network core forms as a result of

pluralistic homophily where the connectedness of nodes is

Fig. 6. AGM on the Facebook network from Fig. 5. AGM successfully

decomposes the network into different tiles (communities) and

correctly determines community overlaps as well as community

memberships for 94% of the nodes.
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proportional to the number of shared community member-

ships, and not just their similarity along a single dimension

or community. Thus, the network core forms as a result of
many overlapping communities. The average number of

community memberships of a node decreases with its dis-

tance from the center of the network (Fig. 7). Moreover,

the edge likelihood increases as a function of community

memberships (Fig. 3). Thus, the nodes in the center of the

network have higher density of edges than nodes in the

periphery. Therefore, we show that even in the presence of

many communities, pluralistic homophily leads to dense
community overlaps, which cause a global core–periphery

network structure.

A further examination of the amount of community

overlap reveals that social, web, and foodweb networks in

Table 1 have a single central dominant core [Fig. 8(a)]. On

the other hand, communities in protein and product

networks have small overlaps and also form many local

cores [Fig. 8(b)]. In particular, protein communities only
slightly overlap and form local cores as well as a small

global core [Fig. 8(d)]. Small overlaps of protein commu-

nities can be explained by the fact that communities act as

functional modules, and it would be hard for the cell to

independently control heavily overlapping modules [2],

[6]. Communities of copurchased products can also be

thought of as functional modules since the products in a

community are bought together for a specific purpose. On
the other hand, foodweb communities overlap pervasively

while forming a single dominant core. This leads to a

flowerlike overlapping community structure [Fig. 8(c)],

where tiles (communities) overlap to form a single core of

the network. The heavily overlapping foodweb communi-

ties form due to the closed nature of the studied Florida

Bay ecosystem [43]. Web communities overlap moderately

and form a single global core. Many of these communities

form around common interests or topics, which may over-

lap with each other [4].

VI. CONCLUSION

We note that our approach builds on the previous work on

community detection [6]–[16]. We examine an implicit

assumption of sparsely connected community overlaps and

find that regions of the network where communities over-

lap have higher density of edges than the nonoverlapping

regions.

We then rethink classical structural definitions of com-
munities and develop the AGM, which models structural

communities as overlapping tiles. Using our well-founded

approach, we find that all networks considered in this study

exhibit a core–periphery structure where nodes that belong

to multiple communities reside in the core of the network.

However, networks have different kinds of core–periphery

structure depending on the mechanism for community

formation in the networks. Dense community overlaps also
explain the mixed success of present community detection

methods when applied to large networks [24], [27].

Our work also enhances our understanding of homo-

phily as one of the most fundamental social forces. Homo-

phily in networks has been traditionally thought to operate

in small pockets/clusters. Thus, nodes that have neighbors

in other communities were considered less likely to share

properties of those neighbors. In contrast, our results are
implying pluralistic homophily where the similarity of

nodes’ properties is proportional to the number of shared

community memberships. In a network, the most central

nodes are those that have the most shared properties/

functions/communities with others. More generally, our

work provides a shift in perspective from conceptual-

izing communities as densely connected sets of nodes to

Fig. 7. Overlapping communities lead to global core–periphery network structure. The average (and the tenth percentiles) of the number of

community memberships hmiðdÞ as a function of its farness centrality d, defined as the average shortest path length of a given node to all

other nodes of the network [3]. (a) LiveJournal social network. (b) Saccharomyces cerevisiae PPI network. The number of community

memberships of a node decreases with its farness centrality. Nodes that reside in the center of the network (and have small shortest path

distances to other nodes of the network) belong to the highest number of communities. This means that core–periphery structure forms due

to community overlaps. Communities in the periphery tend to be nonoverlapping while communities in the core overlap pervasively.
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defining them as overlapping tiles and represents a new

way of studying complex systems. h

APPENDIX I
DETECTING DENSELY
OVERLAPPING COMMUNITIES
Here, we show that three popular community detection

methods, clique percolation (CPM) [10], [44], link

clustering (LC) [6], and stochastic block model [7], [45],

cannot properly detect communities with dense overlaps.

A. Clique Percolation
First, we analyze the CPM and show that it may not

properly detect two overlapping communities from

Fig. 2(c). The CPM has a single input parameter k which

determines the size of the maximal cliques that the algo-

rithm looks for. For example, Fig. 9 shows the result of

CPM on the network of Fig. 2(c) where the overlap be-

tween the two communities is denser than the individual

communities. When k ¼ 3, the CPM finds a community

that covers the whole network because the clique in the

overlap connects the cliques in the left community and the

right community, whereas the CPM finds a community of

the overlap when k ¼ 4.
In addition to CPM, there are many other overlapping

community detection methods that are based on expanding

the maximal cliques. These methods (for example, Greedy

Fig. 8. Primary and secondary cores in networks. (a) The fraction of nodes CðaÞ in the largest connected component of the induced subgraph on

the nodes who belong to at least a communities. By thinking of a network as a valley where peaks correspond to cores and peripheries to lowlands,

our methodology is analogous to flooding lowlands and measuring the fraction of the largest island. A high CðaÞmeans that there is a single

dominant core (peak), while a low CðaÞ suggests the existence of nontrivial secondary cores. (b) Probability density PðoÞ of the maximum overlap

o. Maximum overlap oA of a given community A is defined as the fraction of A’s nodes that are in the overlap with any other community.

Communities in the PPI, social, and product copurchasing networks are mostly nonoverlapping whereas the communities in the foodweb and

the web graph are pervasively overlapping. (c) Communities detected by the AGM in the foodweb form a single central core. (d) Communities

in the PPI network form many secondary cores.

Fig. 9. Clique percolation method cannot detect communities with

dense overlaps. Given a network with two communities and a dense

overlap, clique percolation method would report a community that

(depending on the parameter settings) either (a) includes both

communities, or (b) it would find a small community consisting

only of the overlap: (a) kCPM ¼ 3; (b) kCPM ¼ 4.
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clique expansion [46] and EAGLE [47]) also suffer from

the same problem.

B. Stochastic Block Models
We show that three variants of stochastic block models

are unable to correctly discover communities with dense

overlaps: the traditional stochastic block model [45], the

degree-corrected stochastic block model [48], and the

MMSB model [7]. Based on the input matrix from

Fig. 2(c), all three models identify three blocks, as illustrated

in Fig. 10. The reason for this is that the edge probability

between two nodes that belong to communities A and B is
weighted average of PðA; AÞ and PðB; BÞ, where PðX; YÞ is an

edge probability between a node in community X and a node

in community Y. This means that the edge probability

between the two nodes that share multiple communities is

smaller than the maximum of PðA; AÞ and PðB; BÞ (due to the

weighted summation). Therefore, the edge probability

between overlapping nodes cannot be higher than the edge

probability between nodes in an individual community. We
also note that in principle one could apply postprocessing of

communities detected by stochastic block models to identify

which of the detected structural communities actually

correspond to overlaps of functional communities. However,

it is not immediately clear how to develop such postproces-

sing method.

C. Link Clustering
Last, we show that link clustering [6] is not able to

correctly detect overlapping communities with dense over-
laps. Link clustering performs hierarchical clustering with

the edges of the given network based on the Jaccard simi-

larity between the adjacent nodes of the edges. Since edge

density in the area of community overlap is higher, this

means that the Jaccard similarity between the adjacent

nodes will be higher, which in turn means that link clus-

tering will identify the edges in the overlap as a separate

community. (Refer to the extended version [35] for a more
formal argument.)

APPENDIX II
METRICS OF COMMUNITY
DETECTION ACCURACY
We focus the evaluation of community detection methods

on their ability to correctly identify overlapping ground-

truth communities.

To quantify the performance, we measure the level of
agreement between the detected and ground-truth com-

munities. Given a network GðV; EÞ, we consider a set of

ground-truth communities C� and a set of detected com-

munities Ĉ, where each ground-truth community Ci 2 C�

and each detected community Ĉi 2 Ĉ is defined by a set of

its member nodes. To compare Ĉ and C�, we use four

performance metrics.

1) Average F1 score [49]: We compute FgðCiÞ ¼
maxj F1ðCi; ĈjÞ for each ground-truth community

Ci and FdðĈiÞ ¼ maxj F1ðCj; ĈiÞ for each detected

community Ĉi, where F1ðS1; S2Þ is the harmonic

mean of precision and recall between two node

sets S1; S2. The average F1 score is ð1=2Þð �Fg þ �FdÞ
where �Fg ¼ ð1=jC�jÞ

P
i FgðCiÞ and �Fd ¼ ð1=jĈjÞ�P

i FdðĈiÞ.
2) Omega index [50]: For each pair of nodes u; v 2 V,

we define Cuv to be the set of ground-truth com-

munities to which both u and v belong and Ĉuv to

be the set of detected communities to which both

nodes belong. Then, the omega index is

ð1=jVj2Þ
P

u;v2V 1fjCuvj ¼ jĈuvjg.
3) Normalized mutual information [12]: We com-

pute 1�ð1=2ÞðHðC�jĈÞþHðĈjC�ÞÞ, where HðAjBÞ
is the extension of entropy when A; B are sets of
sets [12].

4) Accuracy in the number of communities:

1� ðjjC�j � jĈjjÞ=jC�j, which is the relative error

in predicting the number of communities.

APPENDIX III
APPLYING AGM TO SOCIAL, PRODUCT,
AND COLLABORATION NETWORKS
Fig. 11(a) displays the composite performance of each of

the five methods over the six networks with ground-truth

communities. Overall, we note that AGM gives best overall

performance on all networks, except the Amazon, where it

ties with MMSB. Furthermore, AGM detects highest
quality communities for most individual performance me-

trics in all networks. On average, the composite perfor-

mance of AGM is 3.40, which is 61% higher than that of

link clustering (2.10), 50% higher than that of CPM (2.41),

30% higher than that of Infomap, and 8% higher than that

of MMSB (3.25). The absolute average value of omega

index of AGM over the six networks is 0.46, which is 21%

Fig. 10. The result of the stochastic block model and the

mixed-membership stochastic block model on a network of two

communities with dense overlap. The adjacency matrix of the network

in Fig. 2(c) is shown, and the bold lines denote the three partitions

discovered by the stochastic block models, where the overlap is

confused as a separate community.
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higher than link clustering (0.38), 22% higher than CPM

(0.37), 5% higher than Infomap (0.44), and 26% higher

than MMSB (0.36).

In terms of absolute values of scores, AGM archives the

average F1 score of 0.57, average omega index of 0.46,

mutual information of 0.15, and accuracy of the number of

communities 0.42. We also note that AGM also outper-

forms CPM with other values of k ðk ¼ 3; 4; 6Þ.

APPENDIX IV

APPLYING AGM TO
BIOLOGICAL NETWORKS
We also evaluate the performance of AGM on the four

types of PPI networks of Saccharomyces cerevisiae [6]. As

performance metrics, we compute the average statistical
significance of detected communities (p-value) for the

three types of GO terms (biological process, cellular com-

ponent, and molecular function) [41].We consider nega-

tive logarithm of average p-values for each of the three GO

term types as three separate scores.

Fig. 11(b) displays the composite performance in the

four PPI networks. We observe that the AGM attains the

best composite performance in all four networks. On ave-

rage, the composite performance of AGM is 3.00, which is

150% higher than that of link clustering (1.20), 163%

higher than that of CPM (1.14), 148% higher than that of
Infomap (1.21), and 12 times higher than that of MMSB

(0.08). We further investigated the poor performance of

MMSB on these networks and found it is due to the fact

that MMSB tends to find very large communities con-

sisting of more than 80% of the nodes.
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